(MAGMAMagma) [Numerator((&+[(-1)^k*Factorial(n)*(52/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
(MAGMAMagma) [Numerator((&+[(-1)^k*Factorial(n)*(52/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
reviewed
approved
proposed
reviewed
editing
proposed
Cf. A009971 (denominators).
Numerators of 1, 52/27, 1246/729, -86840/19683, -9965684/531441, ...
proposed
editing
editing
proposed
G. C. Greubel, <a href="/A160153/b160153.txt">Table of n, a(n) for n = 0..376</a>
From G. C. Greubel, Sep 24 2018: (Start)
a(n) = 27^n * Hermite(n, 26/27).
E.g.f.: exp(52*x - 729*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(52/27)^(n-2*k)/(k!*(n-2*k)!)). (End)
Table[27^n*HermiteH[n, 26/27], {n, 0, 30}] (* G. C. Greubel, Sep 24 2018 *)
(PARI) x='x+O('x^30); Vec(serlaplace(exp(52*x - 729*x^2))) \\ G. C. Greubel, Sep 24 2018
(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(52/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
approved
editing
editing
approved
(PARI) a(n)=numerator(polhermite(n, 26/27)) \\ Charles R Greathouse IV, Jan 29 2016
approved
editing