[go: up one dir, main page]

login
Revision History for A160057 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Decimal expansion of (8979+2990*sqrt(2))/89^2.
(history; published version)
#8 by Charles R Greathouse IV at Thu Sep 08 08:45:44 EDT 2022
PROG

(MAGMAMagma) (8979+2990*Sqrt(2))/89^2; // G. C. Greubel, Apr 15 2018

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#7 by Susanna Cuyler at Mon Apr 16 22:07:08 EDT 2018
STATUS

proposed

approved

#6 by Michel Marcus at Mon Apr 16 02:32:04 EDT 2018
STATUS

editing

proposed

#5 by Michel Marcus at Mon Apr 16 02:31:55 EDT 2018
COMMENTS

Equals lim_{n -> infinity} b(n)/b(n-1) = (8979+2990*sqrt(2))/89^2 for n mod 3 = 0, b = A129298.

Equals lim_{n -> infinity} b(n)/b(n-1) = (8979+2990*sqrt(2))/89^2 for n mod 3 = 1, b = A160055.

FORMULA

Equals (130+23*sqrt(2))/(130-23*sqrt(2)) = (3+2*sqrt(2))*(14- 3*sqrt(2) )^2/(14+3*sqrt(2))^2.

Equals (3+2*sqrt(2))*(14- 3*sqrt(2) )^2/(14+3*sqrt(2))^2.

STATUS

proposed

editing

#4 by G. C. Greubel at Sun Apr 15 22:26:36 EDT 2018
STATUS

editing

proposed

#3 by G. C. Greubel at Sun Apr 15 22:26:27 EDT 2018
LINKS

G. C. Greubel, <a href="/A160057/b160057.txt">Table of n, a(n) for n = 1..10000</a>

FORMULA

Equals (8979130+299023*sqrt(2))/89^2 = (130+-23*sqrt(2))/ = (3+2*sqrt(2))*(13014-23 3*sqrt(2) )^2/(14+3*sqrt(2))^2.

= (3+2*sqrt(2))*(14-3*sqrt(2))^2/(14+3*sqrt(2))^2.

MATHEMATICA

RealDigits[(8979+2990*Sqrt[2])/89^2, 10, 100][[1]] (* G. C. Greubel, Apr 15 2018 *)

PROG

(PARI) (8979+2990*sqrt(2))/89^2 \\ G. C. Greubel, Apr 15 2018

(MAGMA) (8979+2990*Sqrt(2))/89^2; // G. C. Greubel, Apr 15 2018

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:28:01 EDT 2012
AUTHOR

_Klaus Brockhaus (klaus-brockhaus(AT)t-online.de), _, May 04 2009

Discussion
Fri Mar 30
17:28
OEIS Server: https://oeis.org/edit/global/145
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Decimal expansion of (8979+2990*sqrt(2))/89^2.

DATA

1, 6, 6, 7, 4, 0, 2, 9, 2, 2, 7, 9, 9, 5, 9, 0, 2, 2, 7, 9, 9, 1, 0, 4, 2, 7, 0, 7, 4, 0, 9, 0, 3, 8, 9, 1, 6, 1, 6, 2, 5, 1, 9, 7, 4, 5, 9, 1, 3, 0, 2, 5, 4, 6, 8, 8, 5, 4, 7, 2, 4, 4, 5, 6, 0, 7, 7, 8, 0, 4, 5, 8, 4, 0, 9, 3, 1, 3, 2, 1, 8, 6, 1, 0, 8, 1, 5, 0, 3, 2, 5, 4, 1, 8, 4, 6, 3, 3, 6, 3, 5, 2, 4, 5, 1

OFFSET

1,2

COMMENTS

lim_{n -> infinity} b(n)/b(n-1) = (8979+2990*sqrt(2))/89^2 for n mod 3 = 0, b = A129298.

lim_{n -> infinity} b(n)/b(n-1) = (8979+2990*sqrt(2))/89^2 for n mod 3 = 1, b = A160055.

FORMULA

(8979+2990*sqrt(2))/89^2 = (130+23*sqrt(2))/(130-23*sqrt(2))

= (3+2*sqrt(2))*(14-3*sqrt(2))^2/(14+3*sqrt(2))^2.

EXAMPLE

(8979+2990*sqrt(2))/89^2 = 1.66740292279959022799...

CROSSREFS

Cf. A129298, A160055, A002193 (decimal expansion of sqrt(2)), A160056 (decimal expansion of (107+42*sqrt(2))/89).

KEYWORD

cons,nonn

AUTHOR

Klaus Brockhaus (klaus-brockhaus(AT)t-online.de), May 04 2009

STATUS

approved