[go: up one dir, main page]

login
Revision History for A157332 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Denominators of Egyptian fraction for Pi/16 based on Machin's formula
(history; published version)
#10 by Charles R Greathouse IV at Thu Sep 08 08:45:41 EDT 2022
PROG

(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 15); Coefficients(R!( 5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2 )); // G. C. Greubel, Aug 26 2019

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#9 by Alois P. Heinz at Mon Aug 26 21:45:48 EDT 2019
STATUS

proposed

approved

#8 by G. C. Greubel at Mon Aug 26 21:10:21 EDT 2019
STATUS

editing

proposed

#7 by G. C. Greubel at Mon Aug 26 21:09:14 EDT 2019
COMMENTS

Machin's formula: Pi/4 = 4atan(1/5) - atan(1/239). Sum_{n>=0} 1/a(n) = Pi/16 = 4*atan(1/5) - (1/4)atan(1/239).

Sum_{n>=0} 1/a(n) = Pi/16 = atan(1/5) - (1/4)*atan(1/239).

LINKS

G. C. Greubel, <a href="/A157332/b157332.txt">Table of n, a(n) for n = 0..415</a>

FORMULA

a(2n) = (2n2*n+1)*5^(2n+1)2*(-1)^n, a(2n+1)=-4*(2n+1)239^(2n+1)*(-1)^n,

a(2n+1) = -4*(2*n+1)*239^(2*n+1)*(-1)^n.

G.f.: 5*(1-25*x^2)/(1+25*x^2)^2 - 956*x*(1-57121*x^2)/(1+57121*x^2)^2

MAPLE

seq(coeff(series(5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2, x, n+1), x, n), n = 0..15); # G. C. Greubel, Aug 26 2019

MATHEMATICA

CoefficientList[Series[5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2, {x, 0, 15}], x] (* G. C. Greubel, Aug 26 2019 *)

PROG

(PARI) my(x='x+O('x^15)); Vec(5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2) \\ G. C. Greubel, Aug 26 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 15); Coefficients(R!( 5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2 )); // G. C. Greubel, Aug 26 2019

(Sage)

def A077952_list(prec):

P.<x> = PowerSeriesRing(ZZ, prec)

return P( 5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2 ).list()

A077952_list(15) # G. C. Greubel, Aug 26 2019

(GAP)

a:= function(n)

if n mod 2=0 then return (-1)^(n/2)*(n+1)*5^(n+1);

else return -4*(-1)^((n-1)/2)*n*(239)^n;

fi;

end;

List([0..15], n-> a(n) ); # G. C. Greubel, Aug 26 2019

STATUS

approved

editing

#6 by T. D. Noe at Wed Aug 07 12:15:52 EDT 2013
STATUS

proposed

approved

#5 by Colin Barker at Wed Aug 07 11:36:34 EDT 2013
STATUS

editing

proposed

#4 by Colin Barker at Wed Aug 07 11:36:15 EDT 2013
KEYWORD

frac,sign,changed,easy

#3 by Colin Barker at Wed Aug 07 11:35:33 EDT 2013
DATA

5, -956, -375, 163823028, 15625, -15596225303980, -546875, 1247220779824098212, 17578125, -91597497639855832244124, -537109375, 6394838587727583881086964116, 15869140625, -431694043145875922302762745864588, -457763671875

EXTENSIONS

More terms from Colin Barker, Aug 07 2013

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:23:26 EDT 2012
AUTHOR

_Jaume Oliver Lafont (joliverlafont(AT)gmail.com), _, Feb 27 2009

Discussion
Fri Mar 30
17:23
OEIS Server: https://oeis.org/edit/global/130
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Denominators of Egyptian fraction for Pi/16 based on Machin's formula

DATA

5, -956, -375, 163823028, 15625, -15596225303980, -546875, 1247220779824098212, 17578125, -91597497639855832244124, -537109375, 6394838587727583881086964116, 15869140625

OFFSET

0,1

COMMENTS

Machin's formula: Pi/4 = 4atan(1/5) - atan(1/239). Sum_{n>=0} 1/a(n) = Pi/16 = atan(1/5) - (1/4)atan(1/239).

LINKS

X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Pi/piSeries.html">Collection of series for Pi</a>

FORMULA

a(2n)=(2n+1)*5^(2n+1)*(-1)^n, a(2n+1)=-4*(2n+1)239^(2n+1)*(-1)^n

G.f.: 5*(1-25*x^2)/(1+25*x^2)^2-956*x*(1-57121*x^2)/(1+57121*x^2)^2

CROSSREFS
KEYWORD

frac,sign

AUTHOR

Jaume Oliver Lafont (joliverlafont(AT)gmail.com), Feb 27 2009

STATUS

approved