reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
A recursion triangle sequence:fTriangle T(q,n, k)=(1 - (-, q)^ = e(n, k)/(1 + , q);q=2; , where e(n, k, q) = f((1 - (-q, k + )^(n +k- 1))/(1 + q))*e(n - 1, k, q) + (-q)^(n + k - 2)*e(n - 1, k - 1, q), e(n, 0, q) = e(n, n, q) = 1, and q = 2, read by rows.
1, 1, 1, 1, -13, 1, 1, -127, 395, 1, 1, 2635, 8857, -50645, 1, 1, 113369, -1090125, -6392903, 25929899, 1, 1, -9636493, -157388911, 2738123923, 11163788345, -53104434517, 1, 1, -1647840047, 58603503067, 1708972394545, -20846248885229, -99301333604807, 435031527557803, 1
Row sums are:
{1, 2, -11, 270, -39151, 18560242, -39369547651, 316649873125334,
-10469504736950236343, 1366047251880111590518042,...}.
The recursion sequence is an effort to get the q-Lah recursion.
G. C. Greubel, <a href="/A156539/b156539.txt">Rows n = 1..50 of the triangle, flattened</a>
R. Parthasarathy, <a href="http://arxiv.org/abs/quant-ph/0403216">q-Fermionic Numbers and Their Roles in Some Physical Problems</a>, arxivarXiv:quant-ph/0403216, 2004.
fT(n, k, q) = e(n, k, q,), where e(n, k, q) = ((1 - (-q)^(n+k-1))/(1 + q);)*e(n-1, k, q) + (-q)^(n+k-2)*e(n-1, k-1, q), e(n, 0, q) = e(n, n, q) = 1, and q = 2;;.
e(n,k)= f(q, k + n - 1)*e(n - 1, k) + (-q)^(n + k - 2)e(n - 1, k - 1).
{1},
Triangle begins as:
1;
{ 1, 1},;
{ 1, -13, 1},;
{ 1, -127, 395, 1},;
{ 1, 2635, 8857, -50645, 1},;
{ 1, 113369, -1090125, -6392903, 25929899, 1},;
{ 1, -9636493, -157388911, 2738123923, 11163788345, -53104434517, 1},;
{1, -1647840047, 58603503067, 1708972394545, -20846248885229, -99301333604807, 435031527557803, 1},
{1, 561913455515, 38338804386633, -2452767292835141, -49931154777504079, 713057053683646995, 3124896325732724281, -14255113095014110549, 1},
{1, 383786890117769, -53483266744648765, -6541471733965121303, 292767105902855250491, 6970650157511849296049, -91628813770737106650605, -418026940631041685516743, 1868446183589689497791147, 1}
Clear[e, [n, _, k, _, q_]; f:= e[n, k, q_, ]= If[k<0 || k>n, 0, If[k==1 || k_] := =n, 1, ((1 - (-q)^(n+k-1))/(1 + q))*e[n-1, k, q] + (-q)^(n+k-2)*e[n-1, k-1, q] ]];
q = 2; e[n_, 0] := 0; e[n_, 1] := 1;
e[n_, n_] := 1; e[n_, k_] := 0 /; k >= n + 1;
e[n_, k_] := f[q, k + n - 1]*e[n - 1, k] + (-q)^(n + k - 2)e[n - 1, k - 1];
T[n_, k_, q_]:= e[n, k, q];
Table[Table[eT[n, k, 2], {k, 1, n, 12}], , {k, n, 1, 10}]; //Flatten (* modified by _G. C. Greubel_, Jan 03 2022 *)
Flatten[%]
(Sage)
def e(n, k, q):
if (k<0 or k>n): return 0
elif (k==1 or k==n): return 1
else: return ((1-(-q)^(n+k-1))/(1+q))*e(n-1, k, q) + (-q)^(n+k-2)*e(n-1, k-1, q)
def T(n, k, q): return e(n, k, q)
flatten([[T(n, k, 2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jan 03 2022
sign,tabl,uned
Edited by G. C. Greubel, Jan 03 2022
approved
editing
editing
approved
R.Parthasarathy,q-Fermionic Numbers and Their Roles in Some Physical Problems: http://arxiv.org/abs/quant-ph/0403216
R. Parthasarathy, <a href="http://arxiv.org/abs/quant-ph/0403216">q-Fermionic Numbers and Their Roles in Some Physical Problems</a>, arxiv:quant-ph/0403216
approved
editing
_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Feb 09 2009
A recursion triangle sequence:f(q,k)=(1 - (-q)^k)/(1 + q);q=2; e(n,k)= f(q, k + n - 1)*e(n - 1, k) + (-q)^(n + k - 2)e(n - 1, k - 1).
1, 1, 1, 1, -13, 1, 1, -127, 395, 1, 1, 2635, 8857, -50645, 1, 1, 113369, -1090125, -6392903, 25929899, 1, 1, -9636493, -157388911, 2738123923, 11163788345, -53104434517, 1, 1, -1647840047, 58603503067, 1708972394545, -20846248885229
1,5
Row sums are:
{1, 2, -11, 270, -39151, 18560242, -39369547651, 316649873125334,
-10469504736950236343, 1366047251880111590518042,...}.
The recursion sequence is an effort to get the q-Lah recursion.
R.Parthasarathy,q-Fermionic Numbers and Their Roles in Some Physical Problems: http://arxiv.org/abs/quant-ph/0403216
f(q,k)=(1 - (-q)^k)/(1 + q);q=2;;
e(n,k)= f(q, k + n - 1)*e(n - 1, k) + (-q)^(n + k - 2)e(n - 1, k - 1).
{1},
{1, 1},
{1, -13, 1},
{1, -127, 395, 1},
{1, 2635, 8857, -50645, 1},
{1, 113369, -1090125, -6392903, 25929899, 1},
{1, -9636493, -157388911, 2738123923, 11163788345, -53104434517, 1},
{1, -1647840047, 58603503067, 1708972394545, -20846248885229, -99301333604807, 435031527557803, 1},
{1, 561913455515, 38338804386633, -2452767292835141, -49931154777504079, 713057053683646995, 3124896325732724281, -14255113095014110549, 1},
{1, 383786890117769, -53483266744648765, -6541471733965121303, 292767105902855250491, 6970650157511849296049, -91628813770737106650605, -418026940631041685516743, 1868446183589689497791147, 1}
Clear[e, n, k, q]; f[q_, k_] := (1 - (-q)^k)/(1 + q);
q = 2; e[n_, 0] := 0; e[n_, 1] := 1;
e[n_, n_] := 1; e[n_, k_] := 0 /; k >= n + 1;
e[n_, k_] := f[q, k + n - 1]*e[n - 1, k] + (-q)^(n + k - 2)e[n - 1, k - 1];
Table[Table[e[n, k], {k, 1, n}], {n, 1, 10}];
Flatten[%]
sign,tabl,uned,new
Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Feb 09 2009
approved