_Paul D. Hanna (pauldhanna(AT)juno.com), _, Feb 10 2009
_Paul D. Hanna (pauldhanna(AT)juno.com), _, Feb 10 2009
G.f.: A(x) = exp( Sum_{n>=1} 2^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients.
1, 2, 4, 16, 92, 1816, 47344, 4888640, 546663016, 245429690704, 113080892367776, 209848258185362560, 393950238751186551328, 2976605303522286162203456, 22642571073509592590956639360, 692351532949951721637759480882688
0,2
a(n) = (1/n)*Sum_{k=1..n} 2^floor((k^2+1)/2) * a(n-k) for n>0, with a(0)=1.
G.f.: A(x) = 1 + 2*x + 4*x^2 + 16*x^3 + 92*x^4 + 1816*x^5 + 47344*x^6 +...
log(A(x)) = 2*x + 2^2*x^2/2 + 2^5*x^3/3 + 2^8*x^4/4 + 2^13*x^5/5 + 2^18*x^6/6 +...
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, 2^floor((k^2+1)/2)*x^k/k)+x*O(x^n)), n)}
nonn,new
Paul D. Hanna (pauldhanna(AT)juno.com), Feb 10 2009
approved