[go: up one dir, main page]

login
Revision History for A156331 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
#11 by Joerg Arndt at Tue Dec 12 08:03:52 EST 2023
STATUS

proposed

approved

#10 by Paolo P. Lava at Tue Dec 12 07:59:16 EST 2023
STATUS

editing

proposed

#9 by Paolo P. Lava at Tue Dec 12 07:59:14 EST 2023
FORMULA

a(n)=(1/33)*{18*(n mod 12)+40*[(n+1) mod 12]+84*[(n+2) mod 12]-4*[(n+3) mod 12]+84*[(n+4) mod 12]+40*[(n+5) mod 12]+18*[(n+6) mod 12]-4*[(n+7) mod 12]-48*[(n+8) mod 12]+40*[(n+9) mod 12]-48*[(n+10) mod 12]-4*[(n+11) mod 12]}, with n>=0 [From Paolo P. Lava, Feb 13 2009]

STATUS

approved

editing

#8 by Harvey P. Dale at Tue Jul 10 12:37:03 EDT 2018
STATUS

editing

approved

#7 by Harvey P. Dale at Tue Jul 10 12:36:59 EDT 2018
LINKS

<a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, -1, 1).

MATHEMATICA

8*Mod[Fibonacci[Range[1, 151, 2]], 9] (* or *) PadRight[{}, 80, {8, 16, 40, 32, 56, 64, 64, 56, 32, 40, 16, 8}] (* Harvey P. Dale, Jul 10 2018 *)

STATUS

approved

editing

#6 by Russ Cox at Fri Mar 30 18:53:44 EDT 2012
FORMULA

a(n)=(1/33)*{18*(n mod 12)+40*[(n+1) mod 12]+84*[(n+2) mod 12]-4*[(n+3) mod 12]+84*[(n+4) mod 12]+40*[(n+5) mod 12]+18*[(n+6) mod 12]-4*[(n+7) mod 12]-48*[(n+8) mod 12]+40*[(n+9) mod 12]-48*[(n+10) mod 12]-4*[(n+11) mod 12]}, with n>=0 [From _Paolo P. Lava (paoloplava(AT)gmail.com), _, Feb 13 2009]

Discussion
Fri Mar 30
18:53
OEIS Server: https://oeis.org/edit/global/262
#5 by Russ Cox at Fri Mar 30 18:52:00 EDT 2012
AUTHOR

_Paul Curtz (bpcrtz(AT)free.fr), _, Feb 08 2009

Discussion
Fri Mar 30
18:52
OEIS Server: https://oeis.org/edit/global/249
#4 by Russ Cox at Fri Mar 30 17:39:52 EDT 2012
EXTENSIONS

Edited and extended by _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Apr 10 2009

Discussion
Fri Mar 30
17:39
OEIS Server: https://oeis.org/edit/global/190
#3 by T. D. Noe at Wed Sep 28 20:50:42 EDT 2011
FORMULA

a(n)=(1/33)*{18*(n mod 12)+40*[(n+1) mod 12]+84*[(n+2) mod 12]-4*[(n+3) mod 12]+84*[(n+4) mod 12]+40*[(n+5) mod 12]+18*[(n+6) mod 12]-4*[(n+7) mod 12]-48*[(n+8) mod 12]+40*[(n+9) mod 12]-48*[(n+10) mod 12]-4*[(n+11) mod 12]}, with n>=0 [From Paolo P. Lava (pplpaoloplava(AT)splgmail.atcom), Feb 13 2009]

Discussion
Wed Sep 28
20:50
OEIS Server: https://oeis.org/edit/global/96
#2 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

a(n)=8*A154811. Even palindrom of period 12:repeat 8,16,40,32,56,64,64,56,32,40,16,8.

a(n)=8*A154811(n).

DATA

8, 16, 40, 32, 56, 64, 64, 56, 32, 40, 16, 8, 8, 16, 40, 32, 56, 64, 64, 56, 32, 40, 16, 8, 8, 16, 40, 32, 56, 64, 64, 56, 32, 40, 16, 8, 8, 16, 40, 32, 56, 64, 64, 56, 32, 40, 16, 8, 8, 16, 40, 32, 56, 64, 64, 56, 32, 40, 16, 8, 8, 16, 40, 32, 56, 64, 64, 56, 32, 40, 16, 8, 8, 16, 40

COMMENTS

a(n) mod 9=8,7,4,5,2,1,1,2,5,4,7,8,=A154811(n+6)=A155110 mod 9;then linked to A014217=1,1,2,4,6,11,17,29, and Fibonacci A000045(2n+1).

FORMULA

Period length 12: a(n)=a(n-12).

a(n) = A154811(n+6) = A155110(n) (mod 9).

KEYWORD

nonn,uned,neweasy

EXTENSIONS

Edited and extended by R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Apr 10 2009