[go: up one dir, main page]

login
Revision History for A156135 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Numerator(p(x,n)).
(history; published version)
#4 by Sean A. Irvine at Thu Jul 25 01:12:12 EDT 2019
STATUS

editing

approved

#3 by Sean A. Irvine at Thu Jul 25 01:12:08 EDT 2019
NAME

Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(NumberatorNumerator(p(x,n)).

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:34:33 EDT 2012
AUTHOR

_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Feb 04 2009

Discussion
Fri Mar 30
17:34
OEIS Server: https://oeis.org/edit/global/158
#1 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
NAME

Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Numberator(p(x,n)).

DATA

1, 0, -1, 1, 0, 1, -2, 1, 0, 1, -3, 1, 1, 0, 1, -4, -4, 1, 0, -1, 8, 9, -23, 6, 1, 0, 1, -13, -41, 106, -41, -13, 1, 0, 1, -21, -146, 484, -152, -186, 19, 1, 0, 1, -33, -492, 1784, 1784, -492, -33, 1, 0, -1, 55, 1359, -10701, -8552, 27128, -7875, -1467, 53, 1, 0, 1, -89

OFFSET

0,7

COMMENTS

Row sums are:

{1, 0, 0, 0, -6, 0, 0, 0, 2520, 0, 0,...}.

The denominator and numerator polynomials appear to be new.

FORMULA

p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Numerator(p(x,n)).

EXAMPLE

{1},

{0, -1, 1},

{0, 1, -2, 1},

{0, 1, -3, 1, 1},

{0, 1, -4, -4, 1},

{0, -1, 8, 9, -23, 6, 1},

{0, 1, -13, -41, 106, -41, -13, 1},

{0, 1, -21, -146, 484, -152, -186, 19, 1},

{0, 1, -33, -492, 1784, 1784, -492, -33, 1},

{0, -1, 55, 1359, -10701, -8552, 27128, -7875, -1467, 53, 1},

{0, 1, -89, -3872, 50193, 117271, -327008, 117271, 50193, -3872, -89, 1}

MATHEMATICA

Clear[t0, p, x, n, m];

p[x_, n_] = (1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]

Table[Numerator[FullSimplify[ExpandAll[p[x, n]]]], {n, 0, 10}];

Table[CoefficientList[Numerator[FullSimplify[ExpandAll[p[x, n]]]], x], {n, 0, 10}];

Flatten[%]

CROSSREFS
KEYWORD

sign,tabl,uned,new

AUTHOR

Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Feb 04 2009

STATUS

approved