[go: up one dir, main page]

login
Revision History for A153658 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle read by rows: A(n,k)=A(n - 1, k - 1) + A(n - 1, k) + (n + 1)*(n + 2)*A(n - 2, k - 1).
(history; published version)
#4 by N. J. A. Sloane at Wed May 01 21:09:56 EDT 2013
EXTENSIONS

Edited by _N. J. A. Sloane, _, Jun 02 2009

Discussion
Wed May 01
21:09
OEIS Server: https://oeis.org/edit/global/1899
#3 by Russ Cox at Fri Mar 30 17:34:29 EDT 2012
AUTHOR

_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Dec 30 2008

Discussion
Fri Mar 30
17:34
OEIS Server: https://oeis.org/edit/global/158
#2 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Triangular row sum sequence recursion Eulerian number level scale 5Triangle read by rows: A(n,k)=A(n - 1, k - 1) + A(n - 1, k) + (n + 1)*(n + 2)*A(n - 2, k - 1).

COMMENTS

Row sums are (2*(n + 3)!) except for n=1 which is 2: {2, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200, 12454041600}.

{2, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200,

12454041600}.

This sequence is designed to be at the Eulerian numbers equivalent level

for a scale five row sum type.

FORMULA

A(n,k)=A(n - 1, k - 1) + A(n - 1, k) + (n + 1)*(n + 2)*A(n - 2, k - 1).

KEYWORD

nonn,uned,tabl,new

EXTENSIONS

Edited by N. J. A. Sloane, Jun 02 2009

#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

Triangular row sum sequence recursion Eulerian number level scale 5: A(n,k)=A(n - 1, k - 1) + A(n - 1, k) + (n + 1)*(n + 2)*A(n - 2, k - 1).

DATA

2, 120, 120, 2, 1436, 2, 2, 5038, 5038, 2, 2, 5124, 70388, 5124, 2, 2, 5238, 357640, 357640, 5238, 2, 2, 5384, 731806, 5783216, 731806, 5384, 2, 2, 5566, 1208610, 38702622, 38702622, 1208610, 5566, 2, 2, 5788, 1806416, 120409892, 713559004

OFFSET

1,1

COMMENTS

Row sums are (2*(n + 3)!) except for n=1 which is 2:

{2, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200,

12454041600}.

This sequence is designed to be at the Eulerian numbers equivalent level

for a scale five row sum type.

FORMULA

A(n,k)=A(n - 1, k - 1) + A(n - 1, k) + (n + 1)*(n + 2)*A(n - 2, k - 1).

EXAMPLE

{2},

{120, 120},

{2, 1436, 2},

{2, 5038, 5038, 2},

{2, 5124, 70388, 5124, 2},

{2, 5238, 357640, 357640, 5238, 2},

{2, 5384, 731806, 5783216, 731806, 5384, 2},

{2, 5566, 1208610, 38702622, 38702622, 1208610, 5566, 2},

{2, 5788, 1806416, 120409892, 713559004, 120409892, 1806416, 5788, 2},

{2, 6054, 2546916, 281752828, 5942715000, 5942715000, 281752828, 2546916, 6054, 2}

MATHEMATICA

Clear[A]; A[2, 1] := A[2, 2] = (5)!;

A[3, 2] = 2*(6)! - 4; A[4, 2] = A[4, 3] = (7)! - 2;

A[n_, 1] := 2; A[n_, n_] := 2;

A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + (n + 1)*(n + 2)*A[n - 2, k - 1];

a = Table[A[n, k], {n, 10}, {k, n}]; Flatten[a]

Table[Apply[Plus, a[[n]]], {n, 1, 10}];

Table[Apply[Plus, a[[n]]]/(2*(n + 3)!), {n, 1, 10}]

KEYWORD

nonn,uned,tabl,new

AUTHOR

Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Dec 30 2008

STATUS

approved