[go: up one dir, main page]

login
Revision History for A153650 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+4)*prime(j)*T(n-2, k-1) with j=5, read by rows.
(history; published version)
#7 by Susanna Cuyler at Fri Mar 05 10:16:46 EST 2021
STATUS

proposed

approved

#6 by Michel Marcus at Thu Mar 04 23:52:07 EST 2021
STATUS

editing

proposed

#5 by Michel Marcus at Thu Mar 04 23:52:02 EST 2021
CROSSREFS

Cf. A001020 (powers of 11).

STATUS

proposed

editing

#4 by G. C. Greubel at Thu Mar 04 23:47:18 EST 2021
STATUS

editing

proposed

#3 by G. C. Greubel at Thu Mar 04 23:47:11 EST 2021
NAME

A row sum 11^n triangular recursion sequence:Prime[j]=11=scale; ATriangle T(n, k) = AT(n - 1, k - 1) + AT(n - 1, k-1) + (j+4)*Prime[prime(j])*AT(n - 2, k - 1) with j=5, read by rows.

DATA

2, 11, 11, 2, 238, 2, 2, 1329, 1329, 2, 2, 1529, 26220, 1529, 2, 2, 1729, 159320, 159320, 1729, 2, 2, 1929, 312420, 2914420, 312420, 1929, 2, 2, 2129, 485520, 18999520, 18999520, 485520, 2129, 2, 2, 2329, 678620, 50414620, 326526620, 50414620, 678620, 2329, 2

COMMENTS

Row sums are:

{2, 22, 242, 2662, 29282, 322102, 3543122, 38974342, 428717762, 4715895382,...}.

Plot of the lowest level of the fractal is:

a = Table[Table[If[m <= n, If[Mod[A[n, m], 11] == 0, 0, 1], 0], {m, 1, 10}], {n, 1, 10}] ;

ListDensityPlot[a, Mesh -> False, Axes -> False]

LINKS

G. C. Greubel, <a href="/A153650/b153650.txt">Rows n = 1..50 of the triangle, flattened</a>

FORMULA

AT(n, k) = AT(n - 1, k - 1) + AT(n - 1, k-1) + (j+4)*Prime[prime(j])*AT(n - 2, k - 1) with j=5.

From G. C. Greubel, Mar 04 2021: (Start)

T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (1,4,5).

Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1) for j=5 = 2*A001020(n-1). (End)

EXAMPLE

{2},

Triangle begins as:

2;

{ 11, 11},;

{ 2, 238, 2},;

{ 2, 1329, 1329, 2},;

{ 2, 1529, 26220, 1529, 2},;

{ 2, 1729, 159320, 159320, 1729, 2},;

{ 2, 1929, 312420, 2914420, 312420, 1929, 2},;

{ 2, 2129, 485520, 18999520, 18999520, 485520, 2129, 2},;

{ 2, 2329, 678620, 50414620, 326526620, 50414620, 678620, 2329, 2},;

{ 2, 2529, 891720, 99159720, 2257893720, 2257893720, 99159720, 891720, 2529, 2};

MATHEMATICA

ClearT[n_, k_, p_, q_, j_]:= T[n, k, p, q, j]= If[t, n, m, A, a==2, Prime[j]; , If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j ]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k== 5n, 2, T[n-1, k, p, q, j] + T[n-1, k-1, p, q, j] + (p*j+q)*Prime[j]*T[n-2, k-1, p, q, j] ]]];

A[2, 1] := A[2, 2] = Prime[j];

A[3, 2] = 2*Prime[j]^2 - 4;

A[4, 2] = A[4, 3] = Prime[j]^3 - 2;

A[n_, 1] := 2; A[n_, n_] := 2;

A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + (j+4)*Prime[j]*A[n - 2, k - 1];

Table[Table[A[n, m], {m, 1, n}], {n, 1, 10}] ;

Flatten[%] Table[Sum[A[n, m], {m, 1, n}], {n, 1, 10}] ;

Table[Sum[A[n, m], {m, 1, n}]/(2*Prime[j]^(n - 1)), {n, 1, 10}]

Table[T[n, k, 1, 4, 5], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)

PROG

(Sage)

@CachedFunction

def f(n, j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)

def T(n, k, p, q, j):

if (n==2): return nth_prime(j)

elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n, j)

elif (k==1 or k==n): return 2

else: return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*nth_prime(j)*T(n-2, k-1, p, q, j)

flatten([[T(n, k, 1, 4, 5) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021

(Magma)

f:= func< n, j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;

function T(n, k, p, q, j)

if n eq 2 then return NthPrime(j);

elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n, j);

elif (k eq 1 or k eq n) then return 2;

else return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*NthPrime(j)*T(n-2, k-1, p, q, j);

end if; return T;

end function;

[T(n, k, 1, 4, 5): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021

CROSSREFS

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), this sequence (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).

Cf. A001020.

KEYWORD

nonn,uned,tabl

EXTENSIONS

Edited by G. C. Greubel, Mar 04 2021

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:34:28 EDT 2012
AUTHOR

_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Dec 30 2008

Discussion
Fri Mar 30
17:34
OEIS Server: https://oeis.org/edit/global/158
#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

A row sum 11^n triangular recursion sequence:Prime[j]=11=scale; A(n,k)= A(n - 1, k - 1) + A(n - 1, k) + (j+4)*Prime[j]*A(n - 2, k - 1).

DATA

2, 11, 11, 2, 238, 2, 2, 1329, 1329, 2, 2, 1529, 26220, 1529, 2, 2, 1729, 159320, 159320, 1729, 2, 2, 1929, 312420, 2914420, 312420, 1929, 2, 2, 2129, 485520, 18999520, 18999520, 485520, 2129, 2, 2, 2329, 678620, 50414620, 326526620, 50414620

OFFSET

1,1

COMMENTS

Row sums are:

{2, 22, 242, 2662, 29282, 322102, 3543122, 38974342, 428717762, 4715895382,...}.

Plot of the lowest level of the fractal is:

a = Table[Table[If[m <= n, If[Mod[A[n, m], 11] == 0, 0, 1], 0], {m, 1, 10}], {n, 1, 10}] ;

ListDensityPlot[a, Mesh -> False, Axes -> False]

FORMULA

A(n,k)= A(n - 1, k - 1) + A(n - 1, k) + (j+4)*Prime[j]*A(n - 2, k - 1).

EXAMPLE

{2},

{11, 11},

{2, 238, 2},

{2, 1329, 1329, 2},

{2, 1529, 26220, 1529, 2},

{2, 1729, 159320, 159320, 1729, 2},

{2, 1929, 312420, 2914420, 312420, 1929, 2},

{2, 2129, 485520, 18999520, 18999520, 485520, 2129, 2},

{2, 2329, 678620, 50414620, 326526620, 50414620, 678620, 2329, 2},

{2, 2529, 891720, 99159720, 2257893720, 2257893720, 99159720, 891720, 2529, 2}

MATHEMATICA

Clear[t, n, m, A, a]; j = 5;

A[2, 1] := A[2, 2] = Prime[j];

A[3, 2] = 2*Prime[j]^2 - 4;

A[4, 2] = A[4, 3] = Prime[j]^3 - 2;

A[n_, 1] := 2; A[n_, n_] := 2;

A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + (j+4)*Prime[j]*A[n - 2, k - 1];

Table[Table[A[n, m], {m, 1, n}], {n, 1, 10}] ;

Flatten[%] Table[Sum[A[n, m], {m, 1, n}], {n, 1, 10}] ;

Table[Sum[A[n, m], {m, 1, n}]/(2*Prime[j]^(n - 1)), {n, 1, 10}]

KEYWORD

nonn,uned,tabl,new

AUTHOR

Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Dec 30 2008

STATUS

approved