[go: up one dir, main page]

login
Revision History for A148457 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, 1), (0, 0, 1), (1, 1, -1)}.
(history; published version)
#4 by Wesley Ivan Hurt at Wed Dec 27 17:58:06 EST 2023
STATUS

editing

approved

#3 by Wesley Ivan Hurt at Wed Dec 27 17:58:04 EST 2023
NAME

Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, 1), (0, 0, 1), (1, 1, -1)}.

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 18:54:04 EDT 2012
AUTHOR

_Manuel Kauers (manuel(AT)kauers.de), _, Nov 18 2008

Discussion
Fri Mar 30
18:54
OEIS Server: https://oeis.org/edit/global/269
#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, 1), (0, 0, 1), (1, 1, -1)}

DATA

1, 1, 2, 6, 18, 55, 191, 641, 2338, 8412, 31626, 118683, 457359, 1763742, 6931137, 27261381, 108770025, 434387917, 1753998833, 7090521404, 28908852160, 118022306253, 485066186991, 1996484012579, 8261227549240, 34234587581788, 142482320374052, 593868063996294, 2484063713185947

OFFSET

0,3

LINKS

A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

MATHEMATICA

aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

KEYWORD

nonn,walk

AUTHOR

Manuel Kauers (manuel(AT)kauers.de), Nov 18 2008

STATUS

approved