(MAGMAMagma) [p:p in PrimesInInterval(1, 11000000)| IsPrime(a+1) and IsPrime(a-1) and IsPrime(b+1) and IsPrime(b-1) where a is p^2+q^3 where b is p^3+q^2 where q is NextPrime(p)]; // Marius A. Burtea, Jan 01 2020
(MAGMAMagma) [p:p in PrimesInInterval(1, 11000000)| IsPrime(a+1) and IsPrime(a-1) and IsPrime(b+1) and IsPrime(b-1) where a is p^2+q^3 where b is p^3+q^2 where q is NextPrime(p)]; // Marius A. Burtea, Jan 01 2020
proposed
approved
editing
proposed
(MAGMA) [p:p in PrimesInInterval(1, 11000000)| IsPrime(a+1) and IsPrime(a-1) and IsPrime(b+1) and IsPrime(b-1) where a is p^2+(q)^3 where b is p^3+(q)^2 where q is NextPrime(p)]; // Marius A. Burtea, Jan 01 2020
proposed
editing
editing
proposed
(MAGMA) [p:p in PrimesInInterval(1, 11000000)| IsPrime(a+1) and IsPrime(a-1) and IsPrime(b+1) and IsPrime(b-1) where a is p^2+(q)^3 where b is p^3+(q)^2 where q is NextPrime(p)]; // Marius A. Burtea, Jan 01 2020
proposed
editing
editing
proposed
p1 = 23 is a term since the next prime is p2 = 29, and both p1^2 + p2^3 = 24918 and p1^3 + p2^2 = 13008 are averages of twin primes.
Primes p1 such that p1^2 + p2^3=p3 and p1^3 + p2^2=p4, p3 and p4 are average averages of twin primes. p1 and p2 are consecutive primes, p1 < p2.