[go: up one dir, main page]

login
Revision History for A132881 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) is the number of isolated divisors of n.
(history; published version)
#16 by Susanna Cuyler at Sat May 04 21:49:14 EDT 2019
STATUS

proposed

approved

#15 by Jon E. Schoenfield at Sat May 04 21:09:05 EDT 2019
STATUS

editing

proposed

#14 by Jon E. Schoenfield at Sat May 04 21:09:01 EDT 2019
NAME

a(n) = is the number of isolated divisors of n.

COMMENTS

The convention for 1 is that it is an isolated divisor iff n is odd. - Olivier Gérard , Sep 22 2007.

EXAMPLE

The positive divisors of 56 are: 1,2,4,7,8,14,28,56. Of these, 1 and 2 are adjacent and 7 and 8 are adjacent. The isolated divisors are therefore 4,14, 28,56. There are 4 of these, so a(56) = 4.

MAPLE

with(numtheory): a:=proc(n) local div, ISO, i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1, div)=false and member(div[i]+1, div)=false then ISO:=`union`(ISO, {div[i]}) end if end do end proc; 1, 0, seq(nops(a(j)), j=3..105); - _# _Emeric Deutsch_, Oct 02 2007

EXTENSIONS

More terms from Olivier Gérard , Sep 22 2007.

STATUS

approved

editing

#13 by Harvey P. Dale at Mon Jun 04 18:36:55 EDT 2018
STATUS

editing

approved

#12 by Harvey P. Dale at Mon Jun 04 18:36:46 EDT 2018
MATHEMATICA

id[n_]:=DivisorSigma[0, n]-Length[Union[Flatten[Select[Partition[Divisors[ n], 2, 1], #[[2]]-#[[1]]==1&]]]]; Array[id, 110] (* Harvey P. Dale, Jun 04 2018 *)

STATUS

approved

editing

#11 by Charles R Greathouse IV at Tue Mar 11 01:32:22 EDT 2014
AUTHOR

__Leroy Quet__, , Sep 03 2007

Discussion
Tue Mar 11
01:32
OEIS Server: https://oeis.org/edit/global/2122
#10 by N. J. A. Sloane at Wed Feb 05 20:18:42 EST 2014
AUTHOR

__Leroy Quet_, _, Sep 03 2007

Discussion
Wed Feb 05
20:18
OEIS Server: https://oeis.org/edit/global/2118
#9 by N. J. A. Sloane at Wed Feb 05 20:11:58 EST 2014
AUTHOR

_Leroy Quet, _, Sep 03 2007

Discussion
Wed Feb 05
20:11
OEIS Server: https://oeis.org/edit/global/2117
#8 by Russ Cox at Fri Mar 30 17:36:15 EDT 2012
MAPLE

with(numtheory): a:=proc(n) local div, ISO, i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1, div)=false and member(div[i]+1, div)=false then ISO:=`union`(ISO, {div[i]}) end if end do end proc; 1, 0, seq(nops(a(j)), j=3..105); - _Emeric Deutsch (deutsch(AT)duke.poly.edu), _, Oct 02 2007

Discussion
Fri Mar 30
17:36
OEIS Server: https://oeis.org/edit/global/173
#7 by Russ Cox at Fri Mar 30 17:21:00 EDT 2012
COMMENTS

The convention for 1 is that it is an isolated divisor iff n is odd. - _Olivier Gerard (olivier.gerard(AT)gmail.com) Gérard_ Sep 22 2007.

MATHEMATICA

Table[Length@Select[Divisors[n], (#==1||Mod[n, #-1]>0)&&Mod[n, #+1]>0&], {n, 1, 200}] - _Olivier Gerard (olivier.gerard(AT)gmail.com) Gérard_ Sep 22 2007.

EXTENSIONS

More terms from _Olivier Gerard (olivier.gerard(AT)gmail.com) Gérard_ Sep 22 2007.

Discussion
Fri Mar 30
17:21
OEIS Server: https://oeis.org/edit/global/117