reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Let A(x) = Sum_{n>=0} a(n) * x^n / n!^2. Then A(x)^2 = A'(x) + x * A''(x). - Michael Somos, May 20 2018
(PARI) {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( k=0, n, A = 1 + intformal( intformal(A^2) / x)); n!^2 * polcoeff(A, n))}; /* Michael Somos, May 20 2018 */
approved
editing
_Paul D. Hanna (pauldhanna(AT)juno.com), _, Aug 15 2007
a(n) = Sum_{k=0..n} C(n-1,k)^2*a(k)*a(n-k-1) for n>0 with a(0)=1.
1, 1, 2, 8, 52, 504, 6808, 122304, 2820048, 81183200, 2853990496, 120321094656, 5991955466560, 347996920977664, 23312947041336960, 1784445116557881344, 154767015393810489600, 15098457734490931766784
0,3
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, a(k)*a(n-k-1)*binomial(n-1, k)^2 ))
Cf. A001059.
nonn
Paul D. Hanna (pauldhanna(AT)juno.com), Aug 15 2007
approved