editing
approved
editing
approved
P. Steinbach, Field Guide to Simple Graphs. Design Lab, Albuquerque NM, 1990.
approved
editing
<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (43,-691,5146,-17903,25954,-11826,876,-1)
<a href="/index/Rea#recLCCRec">Index to sequences with linear recurrences with constant coefficients</a>, signature (43,-691,5146,-17903,25954,-11826,876,-1)
_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Sep 20 2006
editing
approved
Obtained as the top element of the vector resulting from multiplying the n-th power of the 8 X 8 matrix [[0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1], [-1, -4, 10, 10, -15, -6, 7, 1]] with the column vector which contains only 1's.
proposed
editing
editing
proposed
8 X 8 Vector Matrix Markov for Steinbach characteristic polynomial: Expansion of x*(1 -42*x+650*x^2-4477*x^3+ 12896*x^4 -11417*x^5+2675*x^6+110*x ^7) / ( 1- 10 43*x+691*x^2 - 10 5146*x^3 + 15 17903*x^4 + 6 -25954*x^5 - 7 +11826*x^6 - 876*x^7 +x^8. )
Obtained as the top element of the vector resulting from multiplying the 8 X 8 matrix [[0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1], [-1, -4, 10, 10, -15, -6, 7, 1]] with the column vector which contains only 1's.
<a href="/index/Rea#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (43,-691,5146,-17903,25954,-11826,876,-1)
M = {{0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 1}, {-1, -4, 10, 10, -15, -6, 7, 1}}; v[1] = Table[1, {n, 1, 8}]; v[n_] := v[n] = M.v[n - 1] a(n) = v[n][[1]]
Cf. A066170.
nonn,unedless
approved
editing
8by8 8 X 8 Vector Matrix Markov for Steinbach characteristic polynomial: 1 + 4 x - 10 x^2 - 10 x^3 + 15 x^4 + 6 x^5 - 7 x^6 - x^7 +x^8.
nonn,uned,new
Roger Bagula and Gary Adamson (rlbagularlbagulatftn(AT)sbcglobalyahoo.netcom), Sep 20 2006