_N. J. A. Sloane (njas(AT)research.att.com), _, Mar 17 2007
_N. J. A. Sloane (njas(AT)research.att.com), _, Mar 17 2007
nonn,new
nonn
N. J. A. Sloane (njas, (AT)research.att.com), Mar 17 2007
Numbers n such that (partition number of n) mod n = 14.
A102897(n) - 1.
1402, 3579, 4111, 5289, 6383, 6467, 15146, 32141, 41910, 82849, 110088, 127531, 185114
1, 3, 13, 121, 4959, 2771103, 151947502947
1,1
0,2
The case 14 has unusually large least nSame as A102897, but counts nonempty set systems.
a(1)=1402 because partition number of 1402 is 52435757789401123913939450130086135644 = 1402*37400683159344596229628709079947315 + 14;
Do[ If[ Mod[ PartitionsP@n, n] == 14, Print@n], {n, 731000}] - Robert G. Wilson v Sep 14 2006
more,nonn,new
nonn
Zak Seidov (zakseidov(AT)yahoo.com), Sep 02 2006
njas, Mar 17 2007
More terms from Robert G. Wilson v Sep 14 2006
1402, 3579, 4111, 5289, 6383, 6467, 15146, 32141, 41910, 82849, 110088, 127531, 185114
Do[ If[ Mod[ PartitionsP@n, n] == 14, Print@n], {n, 731000}] - Robert G. Wilson v Sep 14 2006
More terms from Robert G. Wilson v Sep 14 2006
Numbers n such that (partition number of n) mod n = 14.
1402, 3579, 4111, 5289, 6383, 6467, 15146
1,1
The case 14 has unusually large least n.
a(1)=1402 because partition number of 1402 is 52435757789401123913939450130086135644 = 1402*37400683159344596229628709079947315 + 14;
more,nonn,new
Zak Seidov (zakseidov(AT)yahoo.com), Sep 02 2006
approved