editing
approved
editing
approved
No additional terms up to 10000. - Harvey P. Dale, Aug 28 2019
Module[{nn=10000, z}, z=RealDigits[Zeta[3], 10, nn][[1]]; Select[Range[nn], PrimeQ[FromDigits[Take[z, #]]]&]] (* Harvey P. Dale, Aug 28 2019 *)
approved
editing
editing
approved
zeta(3) = 1.2020569031595..., 1202056903--the concatenation of the first 10 decimal digits--is prime, so a(1)=10.
Eric W. Weisstein, May 14, 2006
approved
editing
_Eric W. Weisstein (eric(AT)weisstein.com), _, May 14, 2006
Edited by _Charles R Greathouse IV (charles.greathouse(AT)case.edu), _, Apr 27 2010
nonn,more,base,new
Edited by Charles R Greathouse IV (charles.greathouse(AT)case.edu), Apr 27 2010
nonn,more,new
E. W. Eric Weisstein (eric(AT)weisstein.com), May 14, 2006
Indices of Apery-primes: numbers n such that the concatenation of the first n decimal digits of Apery's constant zeta(3) is prime.
10, 55, 109, 141
1,1
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Apery-Prime.html">Apery-Prime</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>
zeta(3) = 1.2020569031595..., 1202056903--the concatenation of the first 10 decimal digits--is prime, so a(1)=10
nonn,more,new
E. W. Weisstein (eric(AT)weisstein.com), May 14, 2006
approved