reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Colin Barker, <a href="/A116711/b116711.txt">Table of n, a(n) for n = 1..1000</a>
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
G.f.: A(x) = *(1 - x*( + 2*x^5-2 + 2*x^3 - 2*x^2+x-5) / (1) / ( - x-1)^3.
For n >= 4, a(n) = n^2 + 2n 2*n - 12. - Franklin T. Adams-Watters, Sep 16 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - Colin Barker, Oct 23 2017
(PARI) Vec(x*(1 - x + 2*x^2 + 2*x^3 - 2*x^5) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Oct 23 2017
approved
editing
editing
approved
1, 2, 5, 12, 23, 36, 51, 68, 87, 108, 131, 156, 183, 212, 243, 276, 311, 348, 387, 428, 471, 516, 563, 612, 663, 716, 771, 828, 887, 948, 1011, 1076, 1143, 1212, 1283, 1356, 1431, 1508, 1587, 1668, 1751, 1836, 1923, 2012, 2103, 2196, 2291, 2388, 2487, 2588
G.f.: A(x) = {x*(2x2*x^5-2x2*x^3-2x2*x^2+x-1)} /{ (x-1)^3}.
For n >= 4, a(n) = n^2 + 2n - 12. - _Franklin T. Adams-Watters, _, Sep 16 2006
approved
editing
Lara Pudwell, <a href="http://www.mathfaculty.rutgersvalpo.edu/~lpudwell/maple/webbook
Lara Pudwell (_Lara. Pudwell(AT)valpo.edu), _, Feb 26 2006
nonn,easy,new
Lara Pudwell (lpudwellLara.Pudwell(AT)math.rutgersvalpo.edu), Feb 26 2006
nonn,easy,new
Lara Pudwell (lpudwell(AT)math.rutgers.edu), Feb 26 2006