[go: up one dir, main page]

login
Revision History for A114527 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Numbers k such that A086793(k) is 1.
(history; published version)
#10 by Michel Marcus at Thu Jul 01 03:54:51 EDT 2021
STATUS

reviewed

approved

#9 by Joerg Arndt at Thu Jul 01 03:44:35 EDT 2021
STATUS

proposed

reviewed

#8 by Jon E. Schoenfield at Thu Jul 01 03:34:45 EDT 2021
STATUS

editing

proposed

#7 by Jon E. Schoenfield at Thu Jul 01 03:34:41 EDT 2021
NAME

Numbers n k such that A086793(nk) is 1.

COMMENTS

Primes Prime numbers in the sequence are also primes with digit sum = 14 (A106756). - Zak Seidov, May 21 2006

MATHEMATICA

ss={8, 14}; Do[If[15==Total@Flatten[IntegerDigits/@Divisors[n]], AppendTo[ss, n]], {n, 20, 2000}]; ss - _(* _Zak Seidov_, May 21 2006 *)

AUTHOR

_Zak Seidov, _, May 16 2006

STATUS

approved

editing

#6 by Russ Cox at Fri Mar 30 17:26:20 EDT 2012
COMMENTS

Primes numbers in the sequence are also primes with digit sum = 14 (A106756). - _Zak Seidov (zakseidov(AT)yahoo.com), _, May 21 2006

MATHEMATICA

ss={8, 14}; Do[If[15==Total@Flatten[IntegerDigits/@Divisors[n]], AppendTo[ss, n]], {n, 20, 2000}]; ss - _Zak Seidov (zakseidov(AT)yahoo.com), _, May 21 2006

Discussion
Fri Mar 30
17:26
OEIS Server: https://oeis.org/edit/global/139
#5 by Charles R Greathouse IV at Wed Nov 17 13:34:05 EST 2010
STATUS

proposed

approved

#4 by Charles R Greathouse IV at Wed Nov 17 13:34:03 EST 2010
KEYWORD

nonn,base

STATUS

approved

proposed

#3 by N. J. A. Sloane at Fri Sep 29 03:00:00 EDT 2006
NAME

Decimal expansion of Pi csch PiNumbers n such that A086793(n) is 1.

DATA

2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0, 3

8, 14, 20, 26, 59, 62, 122, 123, 143, 149, 167, 206, 239, 257, 293, 302, 341, 347, 383, 419, 422, 491, 509, 563, 617, 653, 743, 761, 941, 1049, 1133, 1193, 1202, 1203, 1229, 1283, 1313, 1319, 1331, 1373, 1409, 1427, 1481, 1553, 1571, 1607

COMMENTS

pi csch pi where where csch(z) = hyberbolic cosecant, csch(z) = 1/sinh(z) = 2/(e^z - e^-z) and directly implemented in Mathematica as Csch[z]. pi csch pi = PRODUCT[from n = 2 to infinity] (n^2 - 1)/(n^2 + 1). This is one of an infinite set of infinite products, the next being PRODUCT[from n = 2 to infinity] (n^3 - 1)/(n^3 + 1) = 2/3. This is related to Ramanujan's surprising formula: PRODUCT[from n = 1 to infinity] (prime(n)^2 - 1)/(prime(n)^2 + 1) = 5/2 and we use it in finding A112407 the semiprime analog.

Primes numbers in the sequence are also primes with digit sum = 14 (A106756). - Zak Seidov (zakseidov(AT)yahoo.com), May 21 2006

REFERENCES

Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.

LINKS

Eric W. Weisstein, <a href="http://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>.

Eric W. Weisstein, <a href="http://mathworld.wolfram.com/HyperbolicCosecant.html">Hyperbolic Cosecant</a>

EXAMPLE

0.272029...

MATHEMATICA

ss={8, 14}; Do[If[15==Total@Flatten[IntegerDigits/@Divisors[n]], AppendTo[ss, n]], {n, 20, 2000}]; ss - Zak Seidov (zakseidov(AT)yahoo.com), May 21 2006

KEYWORD

cons,easy,nonn,new

nonn

AUTHOR

Jonathan Vos Post (jvospost2(AT)yahoo.com), Dec 07 2005

Zak Seidov, May 16 2006

#2 by N. J. A. Sloane at Fri May 19 03:00:00 EDT 2006
REFERENCES

Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.

KEYWORD

cons,easy,nonn,new

#1 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
NAME

Decimal expansion of Pi csch Pi.

DATA

2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0, 3

OFFSET

1,1

COMMENTS

pi csch pi where where csch(z) = hyberbolic cosecant, csch(z) = 1/sinh(z) = 2/(e^z - e^-z) and directly implemented in Mathematica as Csch[z]. pi csch pi = PRODUCT[from n = 2 to infinity] (n^2 - 1)/(n^2 + 1). This is one of an infinite set of infinite products, the next being PRODUCT[from n = 2 to infinity] (n^3 - 1)/(n^3 + 1) = 2/3. This is related to Ramanujan's surprising formula: PRODUCT[from n = 1 to infinity] (prime(n)^2 - 1)/(prime(n)^2 + 1) = 5/2 and we use it in finding A112407 the semiprime analog.

REFERENCES

Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." �1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.

LINKS

Eric W. Weisstein, <a href="http://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>.

Eric W. Weisstein, <a href="http://mathworld.wolfram.com/HyperbolicCosecant.html">Hyperbolic Cosecant</a>

EXAMPLE

0.272029...

CROSSREFS
KEYWORD

cons,easy,nonn

AUTHOR

Jonathan Vos Post (jvospost2(AT)yahoo.com), Dec 07 2005

STATUS

approved