reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Numbers n k such that A086793(nk) is 1.
Primes Prime numbers in the sequence are also primes with digit sum = 14 (A106756). - Zak Seidov, May 21 2006
ss={8, 14}; Do[If[15==Total@Flatten[IntegerDigits/@Divisors[n]], AppendTo[ss, n]], {n, 20, 2000}]; ss - _(* _Zak Seidov_, May 21 2006 *)
_Zak Seidov, _, May 16 2006
approved
editing
Primes numbers in the sequence are also primes with digit sum = 14 (A106756). - _Zak Seidov (zakseidov(AT)yahoo.com), _, May 21 2006
ss={8, 14}; Do[If[15==Total@Flatten[IntegerDigits/@Divisors[n]], AppendTo[ss, n]], {n, 20, 2000}]; ss - _Zak Seidov (zakseidov(AT)yahoo.com), _, May 21 2006
proposed
approved
nonn,base
approved
proposed
Decimal expansion of Pi csch PiNumbers n such that A086793(n) is 1.
2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0, 3
8, 14, 20, 26, 59, 62, 122, 123, 143, 149, 167, 206, 239, 257, 293, 302, 341, 347, 383, 419, 422, 491, 509, 563, 617, 653, 743, 761, 941, 1049, 1133, 1193, 1202, 1203, 1229, 1283, 1313, 1319, 1331, 1373, 1409, 1427, 1481, 1553, 1571, 1607
pi csch pi where where csch(z) = hyberbolic cosecant, csch(z) = 1/sinh(z) = 2/(e^z - e^-z) and directly implemented in Mathematica as Csch[z]. pi csch pi = PRODUCT[from n = 2 to infinity] (n^2 - 1)/(n^2 + 1). This is one of an infinite set of infinite products, the next being PRODUCT[from n = 2 to infinity] (n^3 - 1)/(n^3 + 1) = 2/3. This is related to Ramanujan's surprising formula: PRODUCT[from n = 1 to infinity] (prime(n)^2 - 1)/(prime(n)^2 + 1) = 5/2 and we use it in finding A112407 the semiprime analog.
Primes numbers in the sequence are also primes with digit sum = 14 (A106756). - Zak Seidov (zakseidov(AT)yahoo.com), May 21 2006
Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.
Eric W. Weisstein, <a href="http://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>.
Eric W. Weisstein, <a href="http://mathworld.wolfram.com/HyperbolicCosecant.html">Hyperbolic Cosecant</a>
0.272029...
ss={8, 14}; Do[If[15==Total@Flatten[IntegerDigits/@Divisors[n]], AppendTo[ss, n]], {n, 20, 2000}]; ss - Zak Seidov (zakseidov(AT)yahoo.com), May 21 2006
cons,easy,nonn,new
nonn
Jonathan Vos Post (jvospost2(AT)yahoo.com), Dec 07 2005
Zak Seidov, May 16 2006
Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." �Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.
cons,easy,nonn,new
Decimal expansion of Pi csch Pi.
2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0, 3
1,1
pi csch pi where where csch(z) = hyberbolic cosecant, csch(z) = 1/sinh(z) = 2/(e^z - e^-z) and directly implemented in Mathematica as Csch[z]. pi csch pi = PRODUCT[from n = 2 to infinity] (n^2 - 1)/(n^2 + 1). This is one of an infinite set of infinite products, the next being PRODUCT[from n = 2 to infinity] (n^3 - 1)/(n^3 + 1) = 2/3. This is related to Ramanujan's surprising formula: PRODUCT[from n = 1 to infinity] (prime(n)^2 - 1)/(prime(n)^2 + 1) = 5/2 and we use it in finding A112407 the semiprime analog.
Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." �1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.
Eric W. Weisstein, <a href="http://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>.
Eric W. Weisstein, <a href="http://mathworld.wolfram.com/HyperbolicCosecant.html">Hyperbolic Cosecant</a>
0.272029...
cons,easy,nonn
Jonathan Vos Post (jvospost2(AT)yahoo.com), Dec 07 2005
approved