[go: up one dir, main page]

login
Revision History for A114312 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of partitions of n with at most 3 odd parts.
(history; published version)
#8 by Vaclav Kotesovec at Mon Mar 07 06:34:08 EST 2016
STATUS

editing

approved

#7 by Vaclav Kotesovec at Mon Mar 07 05:15:17 EST 2016
MATHEMATICA

nmax = 50; CoefficientList[Series[(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)

STATUS

approved

editing

#6 by Alois P. Heinz at Sat Feb 02 15:07:04 EST 2013
STATUS

editing

approved

#5 by Alois P. Heinz at Sat Feb 02 15:06:59 EST 2013
LINKS

Alois P. Heinz, <a href="/A114312/b114312.txt">Table of n, a(n) for n = 0..1000</a>

#4 by Alois P. Heinz at Sat Feb 02 15:04:44 EST 2013
DATA

1, 1, 2, 3, 4, 6, 8, 12, 14, 22, 24, 38, 39, 63, 62, 102, 95, 159, 144, 244, 212, 366, 309, 540, 442, 784, 626, 1125, 873, 1591, 1209, 2229, 1653, 3089, 2245, 4243, 3019, 5776, 4035, 7806, 5348, 10466, 7051, 13944, 9229, 18454, 12022, 24282, 15565, 31766, 20063

OFFSET

1,2

0,3

FORMULA

G.f.=: (1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..infinity).

EXAMPLE

a(6) = 8 because we have 6, 51, 42, 411, 33, 321, 222 and 2211 (3111, 21111 and 111111 do not qualify).

MAPLE

G:=(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..100): Gser:=series(G, x=0, , 70): seq(coeff(Gser, x^, n), n=10..60);

STATUS

approved

editing

#3 by Russ Cox at Fri Mar 30 17:36:07 EDT 2012
AUTHOR

_Emeric Deutsch (deutsch(AT)duke.poly.edu), _, Feb 05 2006

Discussion
Fri Mar 30
17:36
OEIS Server: https://oeis.org/edit/global/173
#2 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
EXAMPLE

a(6)=8 because we have 6,51,42,411,33,321,222, and 2211 (3111,21111, and 111111 do not qualify).

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
NAME

Number of partitions of n with at most 3 odd parts.

DATA

1, 2, 3, 4, 6, 8, 12, 14, 22, 24, 38, 39, 63, 62, 102, 95, 159, 144, 244, 212, 366, 309, 540, 442, 784, 626, 1125, 873, 1591, 1209, 2229, 1653, 3089, 2245, 4243, 3019, 5776, 4035, 7806, 5348, 10466, 7051, 13944, 9229, 18454, 12022, 24282, 15565, 31766, 20063

OFFSET

1,2

FORMULA

G.f.=(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..infinity).

EXAMPLE

a(6)=8 because we have 6,51,42,411,33,321,222, and 2211 (3111,21111, and 111111 do not qualify).

MAPLE

G:=(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..100): Gser:=series(G, x=0, 70): seq(coeff(Gser, x^n), n=1..60);

CROSSREFS
KEYWORD

nonn

AUTHOR

Emeric Deutsch (deutsch(AT)duke.poly.edu), Feb 05 2006

STATUS

approved