editing
approved
editing
approved
nmax = 50; CoefficientList[Series[(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
approved
editing
editing
approved
Alois P. Heinz, <a href="/A114312/b114312.txt">Table of n, a(n) for n = 0..1000</a>
1, 1, 2, 3, 4, 6, 8, 12, 14, 22, 24, 38, 39, 63, 62, 102, 95, 159, 144, 244, 212, 366, 309, 540, 442, 784, 626, 1125, 873, 1591, 1209, 2229, 1653, 3089, 2245, 4243, 3019, 5776, 4035, 7806, 5348, 10466, 7051, 13944, 9229, 18454, 12022, 24282, 15565, 31766, 20063
1,2
0,3
G.f.=: (1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..infinity).
a(6) = 8 because we have 6, 51, 42, 411, 33, 321, 222 and 2211 (3111, 21111 and 111111 do not qualify).
G:=(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..100): Gser:=series(G, x=0, , 70): seq(coeff(Gser, x^, n), n=10..60);
approved
editing
_Emeric Deutsch (deutsch(AT)duke.poly.edu), _, Feb 05 2006
a(6)=8 because we have 6,51,42,411,33,321,222, and 2211 (3111,21111, and 111111 do not qualify).
nonn,new
nonn
Number of partitions of n with at most 3 odd parts.
1, 2, 3, 4, 6, 8, 12, 14, 22, 24, 38, 39, 63, 62, 102, 95, 159, 144, 244, 212, 366, 309, 540, 442, 784, 626, 1125, 873, 1591, 1209, 2229, 1653, 3089, 2245, 4243, 3019, 5776, 4035, 7806, 5348, 10466, 7051, 13944, 9229, 18454, 12022, 24282, 15565, 31766, 20063
1,2
G.f.=(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..infinity).
a(6)=8 because we have 6,51,42,411,33,321,222, and 2211 (3111,21111, and 111111 do not qualify).
G:=(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..100): Gser:=series(G, x=0, 70): seq(coeff(Gser, x^n), n=1..60);
nonn
Emeric Deutsch (deutsch(AT)duke.poly.edu), Feb 05 2006
approved