proposed
approved
proposed
approved
editing
proposed
a(n)= (5/n)*sum(Sum_{k=1,..,n} binomial(n, k)*binomial(n+k+4, k-1), k=1..n) = 5*hypergeom([1-n, n+6], [2], -1), n>=1, a(0)=1.
a(n) = 5*hypergeom([1-n, n+6], [2], -1), n>=1, a(0)=1.
(PARI) x='x+O('x^50); Vec(((1+x-sqrt(1-6*x+x^2))/(4*x))^5) \\ G. C. Greubel, Mar 16 2017
approved
editing
proposed
approved
editing
proposed
Vincenzo Librandi, <a href="/A111993/b111993.txt">Table of n, a(n) for n = 0..300</a>
approved
editing
proposed
approved
editing
proposed
Recurrence: n*(n+5)*a(n) = n*(7*n+23)*a(n-1) - (n+2)*(7*n-9)*a(n-2) + (n-3)*(n+2)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 5*sqrt(3*sqrt(2)-4)*(17-12*sqrt(2)) * (3+2*sqrt(2))^(n+5)/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
CoefficientList[Series[((1+x-Sqrt[1-6*x+x^2])/(4*x))^5, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
approved
editing
Wolfdieter Lang (wolfdieter.lang_AT_physik_DOT_uni-karlsruhe_DOT_de), Sep 12 2005
Wolfdieter Lang, Sep 12 2005