proposed
approved
proposed
approved
editing
proposed
G.f.: (1/4)*Loglog(Sum_{n>=0} (n+3)!/3!*x^n) = Sum_{n>=1} a(n)*x^n/n.
G.f.: A(x) = 1/(1 + 4*x - 5*x/(1 + 5*x - 6*x/(1 + 6*x - ... (continued fraction).
a(n) = Sum_{k, =0<=k<=..n} 4^(n-k)*A089949(n,k) . - Philippe Deléham, Oct 16 2006
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k-1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
A(x) satisfies the Riccati equation x^2*A'(x) + 4*x*A^2(x) - (1 + 3*x)*A(x) + 1 = 0.
(1/4)*Log(log(1 + 4*x + 20*x^2 + 120*x^3 + ... + (n+3)!/3!)*x^n + ...)
= x + 6/2*x^2 + 46/3*x^3 + 416/4*x^4 + 4256/5*x^5 + ...
approved
editing
proposed
approved
editing
proposed
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n-Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[4, n];
a /@ Range[0, 19] (* Jean-François Alcover, Oct 01 2019 *)
approved
editing
proposed
approved
editing
proposed
a(n) = Sum_{k, 0<=k<=n}4^(n-k)*A089949(n,k) . - Philippe Deléham, Oct 16 2006
proposed
editing
editing
proposed