(MAGMAMagma) [Gcd(n^4+n^2+1, n^4+4*n^3+7*n^2+6*n+3): n in [0..50]]; // Vincenzo Librandi, Oct 07 2015
(MAGMAMagma) [Gcd(n^4+n^2+1, n^4+4*n^3+7*n^2+6*n+3): n in [0..50]]; // Vincenzo Librandi, Oct 07 2015
reviewed
approved
proposed
reviewed
editing
proposed
(MAGMA) [Gcd(n^4+n^2+1, n^4+4*n^3+7*n^2+6*n+3): n in [0..50]]; // Vincenzo Librandi, Oct 07 2015
proposed
editing
editing
proposed
a(n) = gcd( f(n), f(n+1)) where f(n) = n^4 + n^2 + 1.
a(n) = gcd(f(n), f(n+1)) for all n. a(n) = n^2 + n + 1, except when n congruent to 3 modulo 7 when a(n) = 7(n^2 + n + 1).
a(10) = 7(10^2 + 10 + 1) = 777 because 10 is congruent to 3 modulo 7.
proposed
editing
editing
proposed
f[n_] := n^4 + n^2 + 1; Table[ GCD[f[n], f[n + 1]], {n, 0, 49}] (* Robert G. Wilson v , Oct 02 2005 *)
(PARI) m=50; a=3; for(k=2, m, b=k^4+k^2+1; print1(gcd(a, b), ", "); a=b) \\ Klaus Brockhaus, Oct 02 2005
proposed
editing
editing
proposed