[go: up one dir, main page]

login
Revision History for A108347 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Numbers of the form (3^i)*(5^j)*(7^k), with i, j, k >= 0.
(history; published version)
#39 by Hugo Pfoertner at Wed Sep 18 03:49:13 EDT 2024
STATUS

reviewed

approved

#38 by Joerg Arndt at Wed Sep 18 03:03:32 EDT 2024
STATUS

proposed

reviewed

#37 by Chai Wah Wu at Mon Sep 16 22:05:57 EDT 2024
STATUS

editing

proposed

#36 by Chai Wah Wu at Mon Sep 16 22:05:51 EDT 2024
PROG

return bisection(f, n, n) # Chai Wah Wu, Sep 16 2024

STATUS

proposed

editing

#35 by Chai Wah Wu at Mon Sep 16 22:05:38 EDT 2024
STATUS

editing

proposed

#34 by Chai Wah Wu at Mon Sep 16 22:05:22 EDT 2024
PROG

(Python)

from sympy import integer_log

def A108347(n):

def bisection(f, kmin=0, kmax=1):

while f(kmax) > kmax: kmax <<= 1

while kmax-kmin > 1:

kmid = kmax+kmin>>1

if f(kmid) <= kmid:

kmax = kmid

else:

kmin = kmid

return kmax

def f(x):

c = n+x

for i in range(integer_log(x, 7)[0]+1):

for j in range(integer_log(m:=x//7**i, 5)[0]+1):

c -= integer_log(m//5**j, 3)[0]+1

return c

return bisection(f, n, n) # Chai Wah Wu, Sep 16 2024

STATUS

approved

editing

#33 by R. J. Mathar at Thu Jun 06 11:42:29 EDT 2024
STATUS

editing

approved

#32 by R. J. Mathar at Thu Jun 06 11:42:13 EDT 2024
MAPLE

# alternative

isA108347 := proc(n)

if n = 1 then

true;

else

return (numtheory[factorset](n) minus {3, 5, 7} = {} );

end if;

end proc:

A108347 := proc(n)

option remember;

if n = 1 then

1;

else

for a from procname(n-1)+1 do

if isA108347(a) then

return a;

end if;

end do:

end if;

end proc:

seq(A108347(n), n=1..80); # R. J. Mathar, Jun 06 2024

STATUS

approved

editing

#31 by Charles R Greathouse IV at Thu Sep 08 08:45:19 EDT 2022
PROG

(MAGMAMagma) [n: n in [1..4000] | PrimeDivisors(n) subset [3, 5, 7]]; // Bruno Berselli, Sep 24 2012

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#30 by Vaclav Kotesovec at Wed Sep 23 04:23:30 EDT 2020
STATUS

editing

approved