editing
approved
editing
approved
f[n_] := Count[Table[Mod[k, 6], {k, Prime[n], Prime[n + 1] - 1}], 3]; Table[f[n], {n, 120}] (* _Ray Chandler_, Oct 17 2006 *)
approved
editing
_Giovanni Teofilatto (g.teofilatto(AT)tiscalinet.it), _, May 02 2005
Corrected and extended by _Ray Chandler (rayjchandler(AT)sbcglobal.net), _, Oct 17 2006
easy,nonn,new
Corrected and extended by Ray Chandler (RayChandlerrayjchandler(AT)alumni.tcusbcglobal.edunet), Oct 17 2006
Number of numbers of the form 6k+3=m with prime(n) <= m 6k+3 < prime(n+1).
0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 2, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 2, 2, 1, 0, 1, 1, 0, 2, 1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 2, 0, 3, 1, 2, 1, 1, 0, 1
f[n_] := Count[Table[Mod[k, 6], {k, Prime[n], Prime[n + 1] - 1}], 3]; Table[f[n], {n, 120}] (*Chandler*)
easy,nonn,new
Corrected and extended by Ray Chandler (RayChandler(AT)alumni.tcu.edu), Oct 17 2006
Number of numbers of the form 6k+3=m with prime(n)<= m < prime(n+1).
0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 2, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 2, 1, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1
1,30
a(4)=1 because between prime(4)=7 and prime(5)=11 there is one number of the form 6k+3: 9.
easy,nonn
Giovanni Teofilatto (g.teofilatto(AT)tiscalinet.it), May 02 2005
approved