proposed
approved
proposed
approved
editing
proposed
A. Gagarin, G. Labelle and P. Leroux, <a href="http://arxiv.org/abs/math/0406140">Counting labeled projective-planar graphs without a K_{3,3}-subdivision, </a href="http>, arXiv://front.math.ucdavis.edu/math.CO/0406140">0406140 [math.CO], 2004-2006.htm</a>
approved
editing
_Valery A. Liskovets (liskov(AT)im.bas-net.by), _, Mar 22 2005
A. Gagarin et al., <a href="/A104593/b104593.txt">Table of n, a(n) for n = 4..20</a>
nonn,new
nonn
A. Gagarin et al., <a href="http://www.research.att.com/~njas/sequences/b104593.txt">Table of n, a(n) for n = 4..20</a>
nonn,new
nonn
A. Gagarin et al., <a href="http://www.research.att.com/~njas/sequences/a104593b104593.txt">Table of n, a(n) for n = 4..20</a>
nonn,new
nonn
A. Gagarin et al., <a href="http://www.research.att.com/~njas/sequences/a104593.txt">Table of n, a(n) for n = 4..20</a>
nonn,new
nonn
By empirical evidence, the terms possess a curious prime factor behaviourbehavior. E.g. 2^4*3^4*5^2*7*11*13^2 divides a(16)=11024455369912310561835600.
nonn,new
nonn
By empirical evidence, the terms possess a curious prime factor behaviour. E.g., 2^4*3^4*5^2*7*11*13^2 divides a(16)=11024455369912310561835600.
nonn,new
nonn