[go: up one dir, main page]

login
Revision History for A104593 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of labeled planar 2-connected graphs with no vertex of degree 2 and with n vertices.
(history; published version)
#11 by Bruno Berselli at Mon Nov 02 11:00:42 EST 2015
STATUS

proposed

approved

#10 by Michel Marcus at Mon Nov 02 10:36:16 EST 2015
STATUS

editing

proposed

#9 by Michel Marcus at Mon Nov 02 10:36:11 EST 2015
LINKS

A. Gagarin, G. Labelle and P. Leroux, <a href="http://arxiv.org/abs/math/0406140">Counting labeled projective-planar graphs without a K_{3,3}-subdivision, </a href="http>, arXiv://front.math.ucdavis.edu/math.CO/0406140">0406140 [math.CO], 2004-2006.htm</a>

STATUS

approved

editing

#8 by Russ Cox at Fri Mar 30 18:53:07 EDT 2012
AUTHOR

_Valery A. Liskovets (liskov(AT)im.bas-net.by), _, Mar 22 2005

Discussion
Fri Mar 30
18:53
OEIS Server: https://oeis.org/edit/global/264
#7 by N. J. A. Sloane at Thu Nov 11 07:34:06 EST 2010
LINKS

A. Gagarin et al., <a href="/A104593/b104593.txt">Table of n, a(n) for n = 4..20</a>

KEYWORD

nonn,new

nonn

#6 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
LINKS

A. Gagarin et al., <a href="http://www.research.att.com/~njas/sequences/b104593.txt">Table of n, a(n) for n = 4..20</a>

KEYWORD

nonn,new

nonn

#5 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
LINKS

A. Gagarin et al., <a href="http://www.research.att.com/~njas/sequences/a104593b104593.txt">Table of n, a(n) for n = 4..20</a>

KEYWORD

nonn,new

nonn

#4 by N. J. A. Sloane at Sun Dec 09 03:00:00 EST 2007
LINKS

A. Gagarin et al., <a href="http://www.research.att.com/~njas/sequences/a104593.txt">Table of n, a(n) for n = 4..20</a>

KEYWORD

nonn,new

nonn

#3 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
COMMENTS

By empirical evidence, the terms possess a curious prime factor behaviourbehavior. E.g. 2^4*3^4*5^2*7*11*13^2 divides a(16)=11024455369912310561835600.

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Tue Jul 19 03:00:00 EDT 2005
COMMENTS

By empirical evidence, the terms possess a curious prime factor behaviour. E.g., 2^4*3^4*5^2*7*11*13^2 divides a(16)=11024455369912310561835600.

KEYWORD

nonn,new

nonn