reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Many of these values are derived from the essentially trivial solution {x,y,z} = {(a + b)*b*(3*a^2 + 3*a*b + b^2), a*b*(3*a^2 + 3*a*b + b^2), b*(3*a^2 + 3*a*b + b^2)}. This solution follows from the fact that (a+b)^3-a^3 = b*(3*a^2 + 3*a*b + b^2) and that multiplying this equation by [b*(3*a^2 + 3*a*b + b^2)]^3 gives a solution to y^3 - x^3 = z^4. - _James McLaughlin, Mc Laughlin_, Jan 27 2007
proposed
editing
editing
proposed
Many of these values are derived from the essentially trivial solution {x,y,z} = {(a + b)*b*(3*a^2 + 3*a*b + b^2), a*b*(3*a^2 + 3*a*b + b^2), b*(3*a^2 + 3*a*b + b^2)}. This solution follows from the fact that (a+b)^3-a^3 = b*(3*a^2 + 3*a*b + b^2) and that multiplying this equation by [b*(3*a^2 + 3*a*b + b^2)]^3 gives a solution to y^3 - x^3 = z^4. - James McLaughlin, Jan 27 2007
approved
editing
proposed
approved
editing
proposed
F. Beukers, The Diophantine equation Ax^p+By^q=Cz^r, Duke Math. J. 91 (1998), 61-88.
F. Beukers, <a href="http://dx.doi.org/10.1215/S0012-7094-98-09105-0">The Diophantine equation Ax^p+By^q=Cz^r</a>, Duke Math. J. 91 (1998), 61-88.
proposed
editing
editing
proposed