[go: up one dir, main page]

login
Revision History for A102406 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of Dyck paths of semilength n having no ascents of length 1 that start at an even level.
(history; published version)
#16 by OEIS Server at Thu Oct 31 12:23:36 EDT 2024
LINKS

G. C. Greubel, <a href="/A102406/b102406_1.txt">Table of n, a(n) for n = 0..1000</a>

#15 by Alois P. Heinz at Thu Oct 31 12:23:36 EDT 2024
STATUS

reviewed

approved

Discussion
Thu Oct 31
12:23
OEIS Server: Installed first b-file as b102406.txt.
#14 by Michel Marcus at Thu Oct 31 12:13:38 EDT 2024
STATUS

proposed

reviewed

#13 by G. C. Greubel at Thu Oct 31 05:13:01 EDT 2024
STATUS

editing

proposed

#12 by G. C. Greubel at Thu Oct 31 05:12:57 EDT 2024
LINKS

G. C. Greubel, <a href="/A102406/b102406_1.txt">Table of n, a(n) for n = 0..1000</a>

FORMULA

G.f.: [(1+z+z^2 - sqrt(1-2z2*z-5z5*z^2-2z2*z^3+z^4)])/[2z(2*z*(1+z)^2]).

Conjecture: (n+1)*a(n) +(-(n+-3)*a(n-1) +(-(7*n+-9)*a(n-2) +(-(7*n+-12)*a(n-3) -n*a(n-4) +(n-4)*a(n-5) = 0. - R. J. Mathar, Jan 04 2017

MATHEMATICA

CoefficientList[Series[(1+x+x^2 -Sqrt[1-2*x-5*x^2-2*x^3+x^4])/(2*x*(1+x)^2), {x, 0, 40}], x] (* G. C. Greubel, Oct 31 2024 *)

PROG

(Magma)

R<x>:=PowerSeriesRing(Rationals(), 30);

Coefficients(R!( (1+x+x^2 -Sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) )); // G. C. Greubel, Oct 31 2024

(SageMath)

def A102406_list(prec):

P.<x> = PowerSeriesRing(ZZ, prec)

return P( (1+x+x^2 -sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) ).list()

A102406_list(30) # G. C. Greubel, Oct 31 2024

STATUS

approved

editing

#11 by R. J. Mathar at Wed Jan 04 14:28:58 EST 2017
STATUS

editing

approved

#10 by R. J. Mathar at Wed Jan 04 14:28:47 EST 2017
FORMULA

Conjecture: (n+1)*a(n) +(-n+3)*a(n-1) +(-7*n+9)*a(n-2) +(-7*n+12)*a(n-3) -n*a(n-4) +(n-4)*a(n-5)=0. - R. J. Mathar, Jan 04 2017

STATUS

approved

editing

#9 by Danny Rorabaugh at Fri Oct 16 23:00:35 EDT 2015
STATUS

editing

approved

#8 by Danny Rorabaugh at Thu Oct 15 20:17:33 EDT 2015
COMMENTS

Number of Lukasiewicz Łukasiewicz paths of length n having no level steps at an even level. A Lukasiewicz Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: a(3)=2 because we have UHD and U(2)DD, where U=(1,1), H=(1,0), D=(1,-1) and U(2)=(1,2). a(n)=A102404(n,0).

LINKS

<a href="/index/Lu#Lukasiewicz">Index entries for sequences related to Łukasiewicz</a>

STATUS

approved

editing

#7 by Alois P. Heinz at Sat May 12 15:43:46 EDT 2012
STATUS

editing

approved