[go: up one dir, main page]

login
Revision History for A102055 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Column 1 of A102054, the matrix inverse of A060083 (Euler polynomials).
(history; published version)
#9 by Russ Cox at Fri Mar 30 18:51:51 EDT 2012
FORMULA

This sequence's twin numbers are given in A133135. - _Paul Curtz (bpcrtz(AT)free.fr), _, Aug 07 2008

Discussion
Fri Mar 30
18:51
OEIS Server: https://oeis.org/edit/global/249
#8 by Russ Cox at Fri Mar 30 18:36:44 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Dec 28 2004

Discussion
Fri Mar 30
18:36
OEIS Server: https://oeis.org/edit/global/213
#7 by R. J. Mathar at Thu Jul 07 13:11:43 EDT 2011
STATUS

proposed

approved

#6 by R. J. Mathar at Thu Jul 07 11:57:35 EDT 2011
FORMULA

a(n) = 1 - Sum_{k=0, n-1, n} A001469(k) for n>0, with a(0)=1.

STATUS

approved

proposed

#5 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
FORMULA

This sequence's twin numbers are given in A133135. - Paul Curtz (bpcrtz(AT)free.fr), Aug 07 2008

KEYWORD

sign,new

sign

#4 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

sign,new

sign

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Dec 28 2004

#3 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

a(n) = 1 - Sum_{k=0, n-1} A001469(k) for n>0, with a(0)=1.

KEYWORD

sign,new

sign

#2 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
PROG

(PARI) {a(n)=local(M=matrix(n+2, n+2)); M[1, 1]=1; if(n>0, M[2, 1]=1; M[2, 2]=1); for(r=3, n+2, for(c=1, r, M[r, c]=if(c==1, M[r-1, 1], if(c==r, 1, M[r, c]=M[r-1, c]-((matrix(r-1, r-1, i, j, M[i, j]))^-1)[r-1, c-1])))); return(if(n==0, 1, M[n+2, 2]))}

KEYWORD

sign,new

sign

#1 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
NAME

Column 1 of A102054, the matrix inverse of A060083 (Euler polynomials).

DATA

1, 2, 1, 4, -13, 142, -1931, 36296, -893273, 27927346, -1081725559, 50861556172, -2854289486309, 188475382997654, -14467150771771043, 1277417937676246672, -128570745743431055281, 14632875988040732946106, -1869882665740777942166543, 266593648798424693540514836

OFFSET

0,2

COMMENTS

1-a(n+1) equals the n-th partial sum of the Genocchi numbers (A001469).

FORMULA

a(n) = 1 - Sum_{k=0,n-1} A001469(k) for n>0, with a(0)=1.

PROG

(PARI) {a(n)=local(M=matrix(n+2, n+2)); M[1, 1]=1; if(n>0, M[2, 1]=1; M[2, 2]=1); for(r=3, n+2, for(c=1, r, M[r, c]=if(c==1, M[r-1, 1], if(c==r, 1, M[r, c]=M[r-1, c]-((matrix(r-1, r-1, i, j, M[i, j]))^-1)[r-1, c-1])))); return(if(n==0, 1, M[n+2, 2]))}

CROSSREFS
KEYWORD

sign

AUTHOR

Paul D Hanna (pauldhanna(AT)juno.com), Dec 28 2004

STATUS

approved