proposed
approved
proposed
approved
editing
proposed
A transform of 2^n under the mapping g(x)->(1/sqrt(1-4x))g(xc(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. A transform of 3^n under the mapping g(x)->(1/(c(x)*sqrt(1-4x))g(xcx*c(x)).
proposed
editing
editing
proposed
a(n) = Sum _{k=0..n} binomial(2n,n+k)*2^k, k=0..n.
a(n) = [x^n] 1/((1 - x)^n*(1 - 3*x)). - Ilya Gutkovskiy, Oct 12 2017
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
G.f.: (sqrt(1-4x)+1)/(sqrt(1-4x)(3sqrt(1-4x)-1)); G.f.: sqrt(1-4x)(sqrt(1-4x)-3x+1)/((1-4x)(2-9x)); a(n)=sum{k=0..n, binomial(2n, n-k)2^k}.
G.f.: (sqrt(1-4*x)+1)/(sqrt(1-4*x)*(3*sqrt(1-4*x)-1)).
G.f.: sqrt(1-4*x)*(sqrt(1-4*x)-3*x+1)/((1-4*x)*(2-9*x)).
a(n) = sum{k=0..n, Cbinomial(2n, n-k)*2^(n-k)}; - _Paul Barry_, Jan 11 2007.
a(n) = sum{k=0..n, C(n+k-1,2n,k)3*2^(n-k)}; - Paul Barry, Sep 28 Jan 11 2007
a(n) = sum{k=0..n, C(n+k-1,k)3^(n-k)}; - Paul Barry, Sep 28 2007
proposed
editing
editing
proposed