[go: up one dir, main page]

login
Revision History for A098630 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Consider the family of directed multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled loops and arcs
(history; published version)
#15 by N. J. A. Sloane at Tue Jan 12 21:30:16 EST 2021
STATUS

proposed

approved

#14 by Andrew Howroyd at Tue Jan 12 21:15:34 EST 2021
STATUS

editing

proposed

#13 by Andrew Howroyd at Tue Jan 12 19:49:28 EST 2021
NAME

Consider the family of directed multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled loops and arcs

DATA

1, 4, 60, 1624, 66240, 3711200, 269670208, 24435113216, 2682916389632, 349223324753408, 52965538033020928, 9229753832340117504, 1826647528631522463744, 406579171521484851396608, 100934277604965329345822720, 27746271707522968205726416896

LINKS

Andrew Howroyd, <a href="/A098630/b098630.txt">Table of n, a(n) for n = 0..100</a>

FORMULA

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000079. - Andrew Howroyd, Jan 12 2021

PROG

(PARI) a(n) = {2^n*sum(k=0, 2*n, stirling(2*n, k, 2))} \\ Andrew Howroyd, Jan 12 2021

(PARI) \\ R(n) is A000079 as e.g.f.; EnrichedGdlSeq defined in A098622.

R(n)={exp(2*x + O(x*x^n))}

EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

EXTENSIONS

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

STATUS

approved

editing

#12 by N. J. A. Sloane at Sun Jun 25 15:03:46 EDT 2017
STATUS

editing

approved

#11 by N. J. A. Sloane at Sun Jun 25 15:03:43 EDT 2017
LINKS

G. Paquin, <a href="/A038205/a038205.pdf">Dénombrement de multigraphes enrichis</a>, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]

STATUS

approved

editing

#10 by Jon E. Schoenfield at Fri Oct 23 06:58:03 EDT 2015
STATUS

editing

approved

#9 by Jon E. Schoenfield at Fri Oct 23 06:58:01 EDT 2015
REFERENCES

G. Paquin, D\'enombrement Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

STATUS

approved

editing

#8 by N. J. A. Sloane at Mon Oct 12 16:56:31 EDT 2015
REFERENCES

G. Paquin, D\'enombrement de multigraphes enrichis, M\'emoire, Mémoire, Math. Dept., Univ. Qu\'ebec \`a Montr\'eal, Québec à Montréal, 2004.

Discussion
Mon Oct 12
16:56
OEIS Server: https://oeis.org/edit/global/2464
#7 by Charles R Greathouse IV at Fri May 10 12:45:37 EDT 2013
FORMULA

a(n) = 2^n*Bell(2*n). - _Vladeta Jovovic (vladeta(AT)eunet.rs), _, Aug 22 2006

Discussion
Fri May 10
12:45
OEIS Server: https://oeis.org/edit/global/1911
#6 by Russ Cox at Fri Mar 30 16:50:03 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com), _, Oct 26 2004

Discussion
Fri Mar 30
16:50
OEIS Server: https://oeis.org/edit/global/110