[go: up one dir, main page]

login
Revision History for A089886 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
T(n,k) = number of subsets of {1,..., n} containing exactly k squares, triangle read by rows, 0<=k<n.
(history; published version)
#5 by Russ Cox at Fri Mar 30 18:50:42 EDT 2012
AUTHOR

_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Nov 13 2003

Discussion
Fri Mar 30
18:50
OEIS Server: https://oeis.org/edit/global/246
#4 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
KEYWORD

nonn,tabl,new

AUTHOR

Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystemsgmail.com), Nov 13 2003

#3 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

T(n, k) = binomial(floor(n^(1/2)), k)*2^(n-floor(n^(1/2))).

KEYWORD

nonn,tabl,new

#2 by N. J. A. Sloane at Wed Sep 22 03:00:00 EDT 2004
COMMENTS

T(n,k)=T(n, A000196(n)-k) for 0<=k<=A000196(n);

KEYWORD

nonn,tabl,new

#1 by N. J. A. Sloane at Thu Feb 19 03:00:00 EST 2004
NAME

T(n,k) = number of subsets of {1,..., n} containing exactly k squares, triangle read by rows, 0<=k<n.

DATA

1, 2, 2, 4, 4, 0, 4, 8, 4, 0, 8, 16, 8, 0, 0, 16, 32, 16, 0, 0, 0, 32, 64, 32, 0, 0, 0, 0, 64, 128, 64, 0, 0, 0, 0, 0, 64, 192, 192, 64, 0, 0, 0, 0, 0, 128, 384, 384, 128, 0, 0, 0, 0, 0, 0, 256, 768, 768, 256, 0, 0, 0, 0, 0, 0, 0, 512, 1536, 1536, 512, 0, 0, 0, 0, 0, 0, 0, 0, 1024

OFFSET

1,2

COMMENTS

T(n,k)=T(n,A000196(n)-k) for 0<=k<=A000196(n);

T(n,k)=0 iff k > A000196(n);

A089887(n)=T(n,0); A089889(n)=T(n,1) for n>1; A089890(n)=T(n,2) for n>2;

A089888(n) = Sum(T(n,k): 1<=k<=A000196(n));

T(n,k) = A007318(A000196(n),k)*A000079(n-A000196(n)).

FORMULA

T(n,k) = binomial(floor(n^(1/2)),k)*2^(n-floor(n^(1/2))).

CROSSREFS

Cf. A000290.

KEYWORD

nonn,tabl

AUTHOR

Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Nov 13 2003

STATUS

approved