editing
approved
editing
approved
1, 1, 3, 7, 37, 141, 1111, 5923, 62217, 426457, 5599531, 46910271, 739138093, 7318002277, 134523132927, 1536780478171, 32285551902481, 418004290062513, 9879378882159187, 142957467201379447, 3754163975220491061, 60042136224579367741, 1734423756551866870183
proposed
editing
editing
proposed
The e.g.f. A(x) satisfies the differential equation (x^2 - 1)*A'(x) + (1 + 2*x - x^2)*A(x) = 0 with A(0) = 1, which leads to . Mathar's recurrence above follows from this.
From Peter Bala, Sep 05 2022: (Start)
The e.g.f. A(x) satisfies the differential equation (x^2 - 1)*A'(x) + (1 + 2*x - x^2)*A(x) = 0 with A(0) = 1, which leads to Mathar's recurrence above.
For k a positive integer, reducing the sequence modulo k produces a purely periodic sequence whose period divides k. For example, modulo 5 the sequence becomes [1, 1, 3, 2, 2, 1, 1, 3, 2, 2, ...] of period 5. (End)
nonn,easy
approved
editing
proposed
approved
editing
proposed
a(n) = (1/(2*exp(1))) * (Integral_{t=0..2} t^n*exp(1-abs(1-t)) dt + Integral_{t=0..infinityoo} ((2+t)^n + (-t)^n) * exp(-t) dt). - Groux Roland, Jan 15 2011
proposed
editing
editing
proposed
a(n) = (1/(2*exp(1))) * (Integral_{t=0..2} t^n*exp(1-abs(1-t)) dt + Integral_{t=0..infinity} ((2+t)^n + (-t)^n) * exp(-t) dt). - _Groux Roland, _, Jan 15 2011