Amiram Eldar, <a href="/A083913/b083913_1.txt">Table of n, a(n) for n = 1..10000</a>
Amiram Eldar, <a href="/A083913/b083913_1.txt">Table of n, a(n) for n = 1..10000</a>
reviewed
approved
proposed
reviewed
editing
proposed
Amiram Eldar, <a href="/A083913/b083913_1.txt">Table of n, a(n) for n = 1..10000</a>
a[n_] := DivisorSum[n, 1 &, Mod[#, 10] == 3 &]; Array[a, 100] (* Amiram Eldar, Dec 30 2023 *)
(PARI) a(n) = sumdiv(n, d, d % 10 == 3); \\ Amiram Eldar, Dec 30 2023
R. A. Smith and M. V. Subbarao, <a href="https://doi.org/10.4153/CMB-1981-005-3">The average number of divisors in an arithmetic progression</a>, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,10) - (1 - gamma)/10 = 0.07771547..., gamma(3,10) = -(psi(3/10) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023
nonn,easy
approved
editing
proposed
approved
editing
proposed
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
approved
editing