[go: up one dir, main page]

login
Revision History for A082528 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Least k such that x(k)=0 where x(1)=n x(k)=k^3*floor(x(k-1)/k^3).
(history; published version)
#6 by Russ Cox at Fri Mar 30 18:39:17 EDT 2012
AUTHOR

_Benoit Cloitre (benoit7848c(AT)orange.fr), _, Apr 30 2003

Discussion
Fri Mar 30
18:39
OEIS Server: https://oeis.org/edit/global/216
#5 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
KEYWORD

nonn,new

nonn

AUTHOR

Benoit Cloitre (abmtbenoit7848c(AT)wanadooorange.fr), Apr 30 2003

#4 by N. J. A. Sloane at Wed Sep 21 03:00:00 EDT 2005
KEYWORD

nonn,new

nonn

AUTHOR

Benoit Cloitre (abcloitreabmt(AT)modulonetwanadoo.fr), Apr 30 2003

#3 by N. J. A. Sloane at Tue Jul 19 03:00:00 EDT 2005
KEYWORD

nonn,new

nonn

AUTHOR

Benoit Cloitre (abcloitre(AT)wanadoomodulonet.fr), Apr 30 2003

#2 by N. J. A. Sloane at Thu Feb 19 03:00:00 EST 2004
PROG

(PARI) a(n)=if(n<0, 0, s=n; c=1; while(s-s%(c^3)>0, s=s-s%(c^3); c++); c)

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

Least k such that x(k)=0 where x(1)=n x(k)=k^3*floor(x(k-1)/k^3).

DATA

1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

OFFSET

0,2

COMMENTS

Conjecture : define sequence a(n,m) m real >0 as the least k such that x(k)=0 where x(1)=n x(k)=k^m*floor(x(k-1)/k^m) then a(n,m) is asymptotic to (c(m)*n)^(1/(m+1)). where c(m) is a constant depending on m.

FORMULA

a(n) seems to be asymptotic to (c*n)^(1/4) where c=6.76....

PROG

(PARI) a(n)=if(n<0, 0, s=n; c=1; while(s-s%(c^3)>0, s=s-s%(c^3); c++); c)

CROSSREFS

Cf. A073047.

KEYWORD

nonn

AUTHOR

Benoit Cloitre (abcloitre(AT)wanadoo.fr), Apr 30 2003

STATUS

approved