_Benoit Cloitre (benoit7848c(AT)orange.fr), _, Apr 30 2003
_Benoit Cloitre (benoit7848c(AT)orange.fr), _, Apr 30 2003
nonn,new
nonn
Benoit Cloitre (abmtbenoit7848c(AT)wanadooorange.fr), Apr 30 2003
nonn,new
nonn
Benoit Cloitre (abcloitreabmt(AT)modulonetwanadoo.fr), Apr 30 2003
nonn,new
nonn
Benoit Cloitre (abcloitre(AT)wanadoomodulonet.fr), Apr 30 2003
(PARI) a(n)=if(n<0, 0, s=n; c=1; while(s-s%(c^3)>0, s=s-s%(c^3); c++); c)
nonn,new
nonn
Least k such that x(k)=0 where x(1)=n x(k)=k^3*floor(x(k-1)/k^3).
1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
0,2
Conjecture : define sequence a(n,m) m real >0 as the least k such that x(k)=0 where x(1)=n x(k)=k^m*floor(x(k-1)/k^m) then a(n,m) is asymptotic to (c(m)*n)^(1/(m+1)). where c(m) is a constant depending on m.
a(n) seems to be asymptotic to (c*n)^(1/4) where c=6.76....
(PARI) a(n)=if(n<0, 0, s=n; c=1; while(s-s%(c^3)>0, s=s-s%(c^3); c++); c)
Cf. A073047.
nonn
Benoit Cloitre (abcloitre(AT)wanadoo.fr), Apr 30 2003
approved