reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
kul[x_] := Length[x]-Length[Union[x]] ; frt[x_] := Table[EulerPhi[x+j], {j, 0, h-1}] ; Table[fa=1; k=0; Do[s=fd1frt[n]; s1=kul[s]; If[Equal[s1, 0]&&Equal[fa, 1], k=k+1; Print[{k, n, h, EulerPhi[n], , s}]; fa=0], {n, 1, 10000}], {h, 1, 50}]
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = is smallest number k such that the n successive values of Phi[nphi(k+j] ) (j=0,..,n-1) are all distinct.
n=8: a(8)=37, values of phi[(k] ) for k=37,..,44 are: {36, 18, 24, 16, 40, 12, 42, 20}.
(PARI) a(n) = if(n==1, 1, my(v=vector(n, i, eulerphi(i))); for(k=n, oo, if(#Set(v)==n, return(k-n)); v[k%n+1]=eulerphi(k))); \\ Jinyuan Wang, Feb 10 2021
approved
editing
_Labos E. (labos(AT)ana.sote.hu), Elemer_, Jan 08 2003
kul[x_] := Length[x]-Length[Union[x]] frt[x_] := Table[EulerPhi[x+j], {j, 0, h-1}] Table[fa=1; k=0; Do[s=fd1[n]; s1=kul[s]; If[Equal[s1, 0]&&Equal[fa, 1], k=k+1; Print[{k, n, h, EulerPhi[n], s}]; fa=0], {n, 1, 10000}], {h, 1, 50}]
nonn,new
nonn