[go: up one dir, main page]

login
Revision History for A078678 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of binary strings with n 1's and n 0's avoiding zigzags, that is avoiding the substrings 101 and 010.
(history; published version)
#37 by Alois P. Heinz at Thu Aug 27 19:33:02 EDT 2020
STATUS

proposed

approved

#36 by Michael De Vlieger at Thu Aug 27 19:14:01 EDT 2020
STATUS

editing

proposed

#35 by Michael De Vlieger at Thu Aug 27 19:14:00 EDT 2020
LINKS

Andrei Asinowski, Cyril Banderier, <a href="https://doi.org/10.4230/LIPIcs.AofA.2020.1">On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution</a>, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.

STATUS

approved

editing

#34 by Alois P. Heinz at Thu Feb 13 15:58:27 EST 2020
STATUS

editing

approved

#33 by Alois P. Heinz at Thu Feb 13 12:42:20 EST 2020
DATA

1, 2, 4, 8, 18, 42, 100, 242, 592, 1460, 3624, 9042, 22656, 56970, 143688, 363348, 920886, 2338566, 5949148, 15157874, 38674978, 98803052, 252701484, 646990518, 1658066668, 4252908542, 10917422860, 28046438252, 72099983802, 185469011130, 477383400300

#32 by Alois P. Heinz at Thu Feb 13 12:34:45 EST 2020
CROSSREFS
#31 by Alois P. Heinz at Thu Feb 13 12:24:03 EST 2020
MAPLE

a:= proc(n) option remember; `if`(n<5, [1, 2, 4, 8, 18][n+1],

(2*n*a(n-1)+(n-2)*a(n-2)+(2*n-8)*a(n-3)-(n-4)*a(n-4))/n)

end:

seq(a(n), n=0..40); # Alois P. Heinz, Feb 13 2020

STATUS

reviewed

editing

#30 by Joerg Arndt at Thu Feb 13 06:54:07 EST 2020
STATUS

proposed

reviewed

Discussion
Thu Feb 13
11:54
Michel Marcus: for me it works ?
11:55
Michel Marcus: with pari: a(n) = sum(k=0, n+floor(n/2), binomial( n - k + 2*floor(k/3), floor(k/3) )^2) and then vector(50, n, (n+6)*a(n+6) - (n+7)*a(n+5) - 2*(n+5)*a(n+4) - 5*(n+3)*a(n+3) - 2*(n+1)*a(n+2) - (n-1)*a(n+1) + n*a(n))
12:22
Alois P. Heinz: first recurrence worked but the order was larger than needed, ...
#29 by Georg Fischer at Thu Feb 13 06:14:38 EST 2020
STATUS

editing

proposed

#28 by Georg Fischer at Thu Feb 13 06:13:40 EST 2020
FORMULA

Recurrence: 0 = (n+6)*a(n+6) - (n+7)*a(n+5) - 2*(n+5)*a(n+4) - 5*(n+3)*a(n+3) - 2*(n+1)*a(n+2) - (n-1)*a(n+1) + n*a(n).

D-finite with recurrence: n*a(n) -2*n*a(n-1) +(-n+2)*a(n-2) +2*(-n+4)*a(n-3) +(n-4)*a(n-4)=0. [Doslic] - R. J. Mathar, Jun 21 2018

STATUS

approved

editing

Discussion
Thu Feb 13
06:14
Georg Fischer: The first recurrence did not work.