proposed
approved
proposed
approved
editing
proposed
Andrei Asinowski, Cyril Banderier, <a href="https://doi.org/10.4230/LIPIcs.AofA.2020.1">On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution</a>, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.
approved
editing
editing
approved
1, 2, 4, 8, 18, 42, 100, 242, 592, 1460, 3624, 9042, 22656, 56970, 143688, 363348, 920886, 2338566, 5949148, 15157874, 38674978, 98803052, 252701484, 646990518, 1658066668, 4252908542, 10917422860, 28046438252, 72099983802, 185469011130, 477383400300
a:= proc(n) option remember; `if`(n<5, [1, 2, 4, 8, 18][n+1],
(2*n*a(n-1)+(n-2)*a(n-2)+(2*n-8)*a(n-3)-(n-4)*a(n-4))/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Feb 13 2020
reviewed
editing
proposed
reviewed
editing
proposed
Recurrence: 0 = (n+6)*a(n+6) - (n+7)*a(n+5) - 2*(n+5)*a(n+4) - 5*(n+3)*a(n+3) - 2*(n+1)*a(n+2) - (n-1)*a(n+1) + n*a(n).
D-finite with recurrence: n*a(n) -2*n*a(n-1) +(-n+2)*a(n-2) +2*(-n+4)*a(n-3) +(n-4)*a(n-4)=0. [Doslic] - R. J. Mathar, Jun 21 2018
approved
editing