editing
approved
editing
approved
LinearRecurrence[{20, -170, 780, -1965, 2064, 1800, -6480, 1710, 8600, -3772, -8600, 1710, 6480, 1800, -2064, -1965, -780, -170, -20, -1}, {1, 20, 230, 1980, 14135, 88264, 497860, 2591160, 12630475, 58295380, 256887774, 1087825180, 4449607565, 17654254880, 68177369040, 257006941664, 948023601910, 3428968838680, 12182953719860, 42585118702280}, 20] (* Harvey P. Dale, Nov 20 2022 *)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A073386/b073386.txt">Table of n, a(n) for n = 0..1000</a>
<a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (20,-170,780,-1965,2064,1800,-6480,1710,8600,-3772, -8600,1710,6480,1800,-2064,-1965,-780,-170,-20,-1).
CoefficientList[Series[1/(1-2*x-x^2)^10, {x, 0, 40}], x] (* G. C. Greubel, Oct 03 2022 *)
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^10 )); // G. C. Greubel, Oct 03 2022
(SageMath)
def A073386_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-x^2)^10 ).list()
A073386_list(40) # G. C. Greubel, Oct 03 2022
approved
editing
proposed
approved
editing
proposed
a(n) = sum(b(k)*c(n-k), k=0..n) with b(k) := A000129(k+1) and c(k) := A073385(k).
a(n) = sum((2^n)*binomial(n-k+9, 9)*binomial(n-k, k)*(1/4)^k, k=0..floor(n/2)).
a(n) = F'''''''''(n+10, 2)/9!, that is, 1/9! times the 9th derivative of the (n+10)th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
proposed
editing
editing
proposed