[go: up one dir, main page]

login
Revision History for A067879 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Numbers n such that sigma(n)=phi(n*omega(n)+1).
(history; published version)
#8 by Harvey P. Dale at Sat Jul 08 09:48:27 EDT 2017
STATUS

editing

approved

#7 by Harvey P. Dale at Sat Jul 08 09:48:23 EDT 2017
COMMENTS

"Omega(n)" in the definition means the number of distinct prime factors of n, counted without multiplicity. This is implemented in Mathematica as PrimeNu[n] rather than as PrimeOmega[n]. - Harvey P. Dale, Jul 08 2017

LINKS

Harvey P. Dale, <a href="/A067879/b067879.txt">Table of n, a(n) for n = 1..200</a>

MATHEMATICA

Select[Range[13000], DivisorSigma[1, #]==EulerPhi[#*PrimeNu[#]+1]&] (* Harvey P. Dale, Jul 08 2017 *)

STATUS

approved

editing

#6 by Russ Cox at Fri Mar 30 18:38:52 EDT 2012
AUTHOR

_Benoit Cloitre (benoit7848c(AT)orange.fr), _, Mar 02 2002

Discussion
Fri Mar 30
18:38
OEIS Server: https://oeis.org/edit/global/216
#5 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
KEYWORD

easy,nonn,new

AUTHOR

Benoit Cloitre (abmtbenoit7848c(AT)wanadooorange.fr), Mar 02 2002

#4 by N. J. A. Sloane at Wed Sep 21 03:00:00 EDT 2005
KEYWORD

easy,nonn,new

AUTHOR

Benoit Cloitre (abcloitreabmt(AT)modulonetwanadoo.fr), Mar 02 2002

#3 by N. J. A. Sloane at Tue Jul 19 03:00:00 EDT 2005
KEYWORD

easy,nonn,new

AUTHOR

Benoit Cloitre (abcloitre(AT)wanadoomodulonet.fr), Mar 02 2002

#2 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
NAME

Numbers n such that sigma(n)=phi(n*omega(n)+1).

KEYWORD

easy,nonn,new

#1 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

n such that sigma(n)=phi(n*omega(n)+1).

DATA

1, 6, 30, 38, 55, 85, 87, 188, 236, 264, 445, 451, 618, 655, 672, 715, 717, 897, 913, 1221, 1265, 1357, 1824, 2095, 2515, 2765, 3009, 3247, 3471, 3605, 3741, 4088, 4117, 4237, 5071, 6747, 7195, 7689, 7701, 8120, 10885, 11577, 12128, 12245, 12549

OFFSET

1,2

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre (abcloitre(AT)wanadoo.fr), Mar 02 2002

STATUS

approved