David A. Corneth, <a href="/A060665/b060665_1.txt">Table of n, a(n) for n = 1..10046</a> (first 8577 terms from Robert Israel, terms <= 7*10^6)
David A. Corneth, <a href="/A060665/b060665_1.txt">Table of n, a(n) for n = 1..10046</a> (first 8577 terms from Robert Israel, terms <= 7*10^6)
proposed
approved
editing
proposed
Do we have a(n) ~ c*n where c ~= 700? - David A. Corneth, Sep 23 2019
Robert Israel, David A. Corneth, <a href="/A060665/b060665_1.txt">Table of n, a(n) for n = 1..10046</a> (first 8577 terms from Robert Israel, terms </a>= 7*10^6)
(PARI) upto(n) = {my(v = vecsort(vector(n, i, sigma(i))), res = List()); for(i = 2, #v - 9, if(v[i-1] <= n && v[i-1] != v[i] && v[i] == v[i + 8] && v[i] != v[i+9], listput(res, v[i]))); res} \\ David A. Corneth, Sep 23 2019
approved
editing
proposed
approved
editing
proposed
Robert Israel, <a href="/A060665/b060665.txt">Table of n, a(n) for n = 1..8577</a>
N:= 60000: # to get terms <= N
V:= Vector(N):
for k from 1 to N-1 do
t:= numtheory:-sigma(k);
if t <= N then V[t]:= V[t]+1 fi
od:
select(t -> V[t]=9, [$1..N]); # Robert Israel, Sep 22 2019
approved
editing
_Robert G. Wilson v (rgwv(AT)rgwv.com), _, Apr 18 2001
Sigma(x) = n has exactly nine solutions.
360, 480, 1488, 1800, 1824, 2184, 2232, 2640, 3120, 3420, 3696, 3744, 3960, 4200, 5292, 5580, 5808, 6144, 7344, 7980, 8100, 8352, 8448, 8784, 9144, 10164, 10296, 11592, 11664, 11970, 12432, 13968, 14520, 14560, 15504, 15600, 15912, 16224
1,1
360 = sigma(120) = sigma(174) = sigma(184) = sigma(190) = sigma(267) = sigma(295) = sigma(319) = sigma(323) = sigma(359).
a = Table[ 0, {20000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 20001, a[ [ s ] ]++ ], {n, 1, 20000} ]; Select[ Range[ 20000 ], a[ [ # ] ] == 9 & ]
nonn
Robert G. Wilson v (rgwv(AT)rgwv.com), Apr 18 2001
approved