[go: up one dir, main page]

login
Revision History for A052931 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of 1/(1 - 3*x^2 - x^3).
(history; published version)
#70 by Charles R Greathouse IV at Thu Sep 08 08:44:59 EDT 2022
PROG

(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-3*x^2-x^3) )); // G. C. Greubel, Oct 17 2019

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#69 by Michel Marcus at Mon Oct 21 11:34:43 EDT 2019
STATUS

reviewed

approved

#68 by Joerg Arndt at Mon Oct 21 08:33:51 EDT 2019
STATUS

proposed

reviewed

#67 by Michel Marcus at Fri Oct 18 02:02:04 EDT 2019
STATUS

editing

proposed

#66 by Michel Marcus at Fri Oct 18 02:01:57 EDT 2019
COMMENTS

This sequence a(n) appears in the formula for the nonnegative powers of the algebraic number rho(9) := 2*cos(piPi/9) of degree 3, the ratio of the smallest diagonal/side in the regular 9-gon, in terms of the power basis of the algebraic number field Q(rho(9)) (see A187360, n=9). rho(9)^n = A(n)*1 + B(n)*rho(9) + C(n)*rho(9)^2, with A(0) = 1, A(1) = 0, A(n) = B(n-2), n >= 2, B(0) = 0, B(n) = a(n-1), n >= 1, C(0) = 0, C(n) = B(n-1), n >= 1. (End)

rho(9)^n = A(n)*1 + B(n)*rho(9) + C(n)*rho(9)^2, with A(0) = 1, A(1) = 0, A(n) = B(n-2), n >= 2, B(0) = 0, B(n) = a(n-1), n >= 1, C(0) = 0, C(n) = B(n-1), n >= 1. (End)

STATUS

proposed

editing

#65 by G. C. Greubel at Thu Oct 17 23:37:39 EDT 2019
STATUS

editing

proposed

#64 by G. C. Greubel at Thu Oct 17 23:35:55 EDT 2019
LINKS

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,1).

FORMULA

Recurrence: a(1)=0, a(0n) =1, 3*a(n-2)=3, + a(n)+-3*), with a(n+0)=1)-, a(n+31)=0, a(2)=3.

a(n) = Sum_{alpha=RootOf(-1+3*z^2+z^3)} (1/9)*(-1 +5*_alpha +2*_alpha^2) *_ alpha^(-1-n), _alpha=RootOf(-1+3*_Z^2+_Z^3)).

MAPLE

seq(coeff(series(1/(1-3*x^2-x^3), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 17 2019

PROG

(PARI) x='x+O('x^9940); Vec(1/(1-3*x^2-x^3)) \\ Altug Alkan, Feb 20 2018

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-3*x^2-x^3) )); // G. C. Greubel, Oct 17 2019

(Sage)

def A052931_list(prec):

P.<x> = PowerSeriesRing(ZZ, prec)

return P(1/(1-3*x^2-x^3)).list()

A052931_list(40) # G. C. Greubel, Oct 17 2019

(GAP) a:=[1, 0, 3];; for n in [4..40] do a[n]:=3*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Oct 17 2019

STATUS

approved

editing

#63 by Joerg Arndt at Tue Feb 20 07:12:27 EST 2018
STATUS

proposed

approved

#62 by Michel Marcus at Tue Feb 20 07:10:11 EST 2018
STATUS

editing

proposed

#61 by Michel Marcus at Tue Feb 20 07:10:08 EST 2018
LINKS

N. Gogin and A. Mylläri, <a href="http://math.unm.edu/~aca/ACA/2013/Nonstandard/Gogin.pdf">Padovan-like sequences and Bell polynomials</a>, Proceedings of Applications of Computer Algebra ACA, 2013.

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,1)

STATUS

approved

editing