[go: up one dir, main page]

login
Revision History for A051182 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of 5-element intersecting families of an n-element set.
(history; published version)
#8 by Wesley Ivan Hurt at Sun Apr 10 14:28:11 EDT 2022
STATUS

editing

approved

#7 by Wesley Ivan Hurt at Sun Apr 10 14:28:03 EDT 2022
FORMULA

1/5!(32^n-10*24^n+30*20^n-5*18^n+5*17^n-80*16^n-30*15^n+135*14^n+30*13^n-80*12^n-2*11^n+10*10^n-100*9^n+240*8^n-160*7^n-44*6^n+95*5^n-85*4^n+50*3^n+24*2^n-24).

STATUS

approved

editing

#6 by R. J. Mathar at Thu Jun 13 14:37:48 EDT 2013
STATUS

editing

approved

#5 by R. J. Mathar at Thu Jun 13 14:37:43 EDT 2013
AUTHOR

_Vladeta Jovovic, _, Goran Kilibarda (vladeta(AT)eunet.rs)

STATUS

approved

editing

#4 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
KEYWORD

nonn,new

nonn

AUTHOR

Vladeta Jovovic, Goran Kilibarda (vladeta(AT)Euneteunet.yurs)

#3 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
KEYWORD

nonn,new

nonn

AUTHOR

Vladeta Jovovic, Goran Kilibarda (vladeta@(AT)Eunet.yu)

#2 by N. J. A. Sloane at Mon May 08 03:00:00 EDT 2000
REFERENCES

V. Jovovic, G. Kilbarda, Kilibarda, On the number of Boolean functions from in the Post classes F(^{mu}_8), (in Russian), , Diskretnaya Matematika, Moskva, to appear11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Sat Dec 11 03:00:00 EST 1999
NAME

Number of 5-element intersecting families of an n-element set.

DATA

0, 0, 0, 0, 371, 38163, 2236504, 103998636, 4289058501, 164693276181, 6034793020298, 213993130915542, 7407880110115111, 251837583669470799, 8443568934653875932, 280082506996725346368

OFFSET

0,5

REFERENCES

V.Jovovic, G. Kilbarda, On the number of Boolean functions from the Post classes F(8), (in Russian), Diskretnaya Matematika, Moskva, to appear.

FORMULA

1/5!(32^n-10*24^n+30*20^n-5*18^n+5*17^n-80*16^n-30*15^n+135*14^n+30*13^n-80*12^n-2*11^n+10*10^n-100*9^n+240*8^n-160*7^n-44*6^n+95*5^n-85*4^n+50*3^n+24*2^n-24)

CROSSREFS
KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Goran Kilibarda (vladeta@Eunet.yu)

STATUS

approved