[go: up one dir, main page]

login
Revision History for A049119 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Row sums of triangle A035469.
(history; published version)
#11 by Russ Cox at Sat Mar 31 13:19:59 EDT 2012
AUTHOR

Wolfdieter Lang (wolfdieter.lang(AT)physik.uni-karlsruhe.de)

Wolfdieter Lang

Discussion
Sat Mar 31
13:19
OEIS Server: https://oeis.org/edit/global/878
#10 by T. D. Noe at Fri Nov 25 22:54:15 EST 2011
STATUS

editing

approved

#9 by T. D. Noe at Fri Nov 25 22:54:11 EST 2011
FORMULA

a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^4*d/dx. Cf. A000110, A000262, A049118 and A049120 . - Peter Bala, Nov 25 2011

STATUS

proposed

editing

#8 by Peter Bala at Fri Nov 25 06:32:51 EST 2011
STATUS

editing

proposed

#7 by Peter Bala at Fri Nov 25 06:32:33 EST 2011
FORMULA

a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^4*d/dx. Cf. A000110, A000262, A049118 and A049120 - Peter Bala, Nov 25 2011

CROSSREFS

Cf. A049118, generalized Bell numbers B(3, 1, n). A049120.

STATUS

approved

editing

#6 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
CROSSREFS

Cf. A049118, generalized Bell numbers B(3, 1, n).

KEYWORD

easy,nonn,new

#5 by N. J. A. Sloane at Sat Apr 09 03:00:00 EDT 2005
LINKS

W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

KEYWORD

easy,nonn,new

#4 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
LINKS

W. Lang, <a href="http://www.mathcs.uwaterloo.ca/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

KEYWORD

easy,nonn,new

#3 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
COMMENTS

Generalized Bell numbers B(4,1;n).

REFERENCES

P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.

LINKS

P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem.</a>

P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://arXiv.org/abs/quant-ph/0311033">Combinatorial coherent states via normal ordering of bosons</a>.

CROSSREFS

Cf. A049118, generalized Bell numbers B(3, 1,n).

KEYWORD

easy,nonn,new

#2 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
LINKS

W. Lang, <a href="http://www.math.uwaterloo.ca/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

KEYWORD

easy,nonn,new

AUTHOR

Wolfdieter Lang (wolfdieter.lang@(AT)physik.uni-karlsruhe.de)