proposed
approved
proposed
approved
editing
proposed
Starting with offset 1, = the partition triangle A026794 * [1, 2, 3, ...]. - Gary W. Adamson, Feb 13 2008
For n >= 1, a(n) = T(n+1,1) + T(n+2,2) + T(n+3,3)+ ... (sum along a falling diagonal) of the partition triangle A026794. - Bob Selcoe, Jun 22 2013
G.f.: Sum_{k>=1} (-1 + 1/Product_{i>=0} (1-z^(k+i))). - Vladeta Jovovic, Jun 22 2003 [Cannot verify, Joerg Arndt, Apr 17 2011]
G.f.: Sum_{j>=1} (x^j/(1-x^j))/Product(1-x^i, _{i=1..j), j=} (1..infinity-x^i). - Vladeta Jovovic, Aug 11 2004 [Cannot verify, Joerg Arndt, Apr 17 2011]
G.f.: sum_Sum_{k >= 1} (-1 + z^k/(1-z^k)(1-z^{k+1})(1-z^{k+2})...). - Don Knuth, Aug 08 2002 [Cannot verify, Joerg Arndt, Apr 17 2011]
G.f.: sum(Sum_{n>=1, } (x^n/(1-x^n) ) / prod(Product_{k=1..n, } (1-x^k) ). - Joerg Arndt, May 26 2012
approved
editing
editing
approved
editing
approved
nonn,changed,nice
approved
editing
Vaclav Kotesovec, <a href="/A046746/b046746_2.txt">Table of n, a(n) for n = 0..20000</a> (terms 0..10000 from Alois P. Heinz)
editing
approved
Alois P. Heinz, Vaclav Kotesovec, <a href="/A046746/b046746_2.txt">Table of n, a(n) for n = 0..20000</a> (terms 0..10000</a> from Alois P. Heinz)
approved
editing