proposed
approved
proposed
approved
editing
proposed
<a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1).
a(n)=(1/24)*{-229*(n mod 4)+65*[(n+1) mod 4]+41*[(n+2) mod 4]+335*[(n+3) mod 4]}-24*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava, May 15 2009]
From Amiram Eldar, Dec 27 2023: (Start)
Multiplicative with a(2) = 3, a(2^e) = 48 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-1) + 45/2^(2*s)). (End)
nonn,cofr,easy,less,mult
approved
editing
editing
approved
ContinuedFraction[Sqrt[615], 100] (* or *) PadRight[{24}, 100, {48, 1, 3, 1}] (* Harvey P. Dale, Feb 02 2022 *)
approved
editing
editing
approved
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1).
approved
editing
a(n)=(1/24)*{-229*(n mod 4)+65*[(n+1) mod 4]+41*[(n+2) mod 4]+335*[(n+3) mod 4]}-24*[C(2*n,n) mod 2], with n>=0 [From _Paolo P. Lava (paoloplava(AT)gmail.com), _, May 15 2009]
_N. J. A. Sloane (njas(AT)research.att.com)_.
a(n)=(1/24)*{-229*(n mod 4)+65*[(n+1) mod 4]+41*[(n+2) mod 4]+335*[(n+3) mod 4]}-24*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava (pplpaoloplava(AT)splgmail.atcom), May 15 2009]