[go: up one dir, main page]

login
Revision History for A040245 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Continued fraction for sqrt(262).
(history; published version)
#16 by Joerg Arndt at Wed Dec 27 00:01:11 EST 2023
STATUS

editing

approved

#15 by Paolo P. Lava at Tue Dec 26 11:57:18 EST 2023
FORMULA

a(n)=(1/1274)*{-2367*(n mod 14)-183*[(n+1) mod 14]-[(n+2) mod 14]+181*[(n+3) mod 14]-[(n+4) mod 14]+909*[(n+5) mod 14]+636*[(n+6) mod 14]-456*[(n+7) mod 14]-729*[(n+8) mod 14]+181*[(n+9) mod 14]-[(n+10) mod 14]+181*[(n+11) mod 14]+363*[(n+12) mod 14]+2547*[(n+13) mod 14]}-16*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava, Apr 21 2009]

STATUS

approved

editing

#14 by Ray Chandler at Fri Mar 10 08:24:06 EST 2017
STATUS

editing

approved

#13 by Ray Chandler at Fri Mar 10 08:24:03 EST 2017
LINKS

<a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

STATUS

approved

editing

#12 by Harvey P. Dale at Thu Mar 13 15:12:22 EDT 2014
STATUS

editing

approved

#11 by Harvey P. Dale at Thu Mar 13 15:12:18 EDT 2014
MATHEMATICA

ContinuedFraction[Sqrt[262], 120] (* Harvey P. Dale, Mar 13 2014 *)

STATUS

approved

editing

#10 by Russ Cox at Fri Mar 30 18:53:22 EDT 2012
FORMULA

a(n)=(1/1274)*{-2367*(n mod 14)-183*[(n+1) mod 14]-[(n+2) mod 14]+181*[(n+3) mod 14]-[(n+4) mod 14]+909*[(n+5) mod 14]+636*[(n+6) mod 14]-456*[(n+7) mod 14]-729*[(n+8) mod 14]+181*[(n+9) mod 14]-[(n+10) mod 14]+181*[(n+11) mod 14]+363*[(n+12) mod 14]+2547*[(n+13) mod 14]}-16*[C(2*n,n) mod 2], with n>=0 [From _Paolo P. Lava (paoloplava(AT)gmail.com), _, Apr 21 2009]

Discussion
Fri Mar 30
18:53
OEIS Server: https://oeis.org/edit/global/262
#9 by Russ Cox at Fri Mar 30 16:47:55 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com)_.

Discussion
Fri Mar 30
16:47
OEIS Server: https://oeis.org/edit/global/110
#8 by T. D. Noe at Wed Sep 28 20:45:32 EDT 2011
FORMULA

a(n)=(1/1274)*{-2367*(n mod 14)-183*[(n+1) mod 14]-[(n+2) mod 14]+181*[(n+3) mod 14]-[(n+4) mod 14]+909*[(n+5) mod 14]+636*[(n+6) mod 14]-456*[(n+7) mod 14]-729*[(n+8) mod 14]+181*[(n+9) mod 14]-[(n+10) mod 14]+181*[(n+11) mod 14]+363*[(n+12) mod 14]+2547*[(n+13) mod 14]}-16*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava (pplpaoloplava(AT)splgmail.atcom), Apr 21 2009]

Discussion
Wed Sep 28
20:45
OEIS Server: https://oeis.org/edit/global/96
#7 by Russ Cox at Sun Jul 10 18:17:43 EDT 2011
LINKS

<a href="/Sindx_index/Con.html#confC">Index entries for continued fractions for constants</a>

Discussion
Sun Jul 10
18:17
OEIS Server: https://oeis.org/edit/global/31