[go: up one dir, main page]

login
Revision History for A034801 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle of Fibonomial coefficients (k=2).
(history; published version)
#17 by Alois P. Heinz at Wed Nov 13 15:01:17 EST 2019
STATUS

proposed

approved

#16 by Michel Marcus at Wed Nov 13 14:57:50 EST 2019
STATUS

editing

proposed

#15 by Michel Marcus at Wed Nov 13 14:57:45 EST 2019
LINKS

C. Pita, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pita/pita12.html">On s-Fibonomials</a>, J. Int. Seq. 14 (2011) # 11.3.7.

C. J. Pita Ruiz Velasco, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pita2/pita8.html">Sums of Products of s-Fibonacci Polynomial Sequences</a>, J. Int. Seq. 14 (2011) # 11.7.6.

STATUS

proposed

editing

#14 by G. C. Greubel at Wed Nov 13 14:06:11 EST 2019
STATUS

editing

proposed

#13 by G. C. Greubel at Wed Nov 13 14:04:48 EST 2019
PROG

[[F(n, k, 2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 13 2019(GAP)F:= function(n, k, q)

(GAP)

F:= function(n, k, q)

#12 by G. C. Greubel at Wed Nov 13 14:04:11 EST 2019
DATA

1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 21, 56, 21, 1, 1, 55, 385, 385, 55, 1, 1, 144, 2640, 6930, 2640, 144, 1, 1, 377, 18096, 124410, 124410, 18096, 377, 1, 1, 987, 124033, 2232594, 5847270, 2232594, 124033, 987, 1, 1, 2584, 850136, 40062659, 274715376, 274715376, 40062659, 850136, 2584, 1

LINKS

G. C. Greubel, <a href="/A034801/b034801.txt">Rows n = 0..100 of triangle, flattened</a>

FORMULA

aT(n, k) = product(fibonacci(2*(n-j)), Product_{j=0..k-1)/product(fibonacci} Fibonacci(2*(n-j), ) / Product_{j=1..k} Fibonacci(2*j).

EXAMPLE

Triangle begins as:

1 ;

1 , 1 ;

1 , 3 , 1 ;

1 , 8 , 8 , 1 ;

1 , 21 , 56 , 21 , 1 ;

1 , 55 , 385 , 385 , 55 , 1 ;

1 , 144 , 2640 , 6930 , 2640 , 144 , 1 ;

1 , 377 , 18096 , 124410 , 124410 , 18096 , 377 , 1 ;

1 , 987 , 124033 , 2232594 , 5847270 , 2232594 , 124033 , 987 , 1 ;

MATHEMATICA

F[n_, k_, q_]:= Product[Fibonacci[q*(n-j+1)]/Fibonacci[q*j], {j, k}];

Table[F[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 13 2019 *)

PROG

(PARI) F(n, k, q) = f=fibonacci; prod(j=1, k, f(q*(n-j+1))/f(q*j)); \\ G. C. Greubel, Nov 13 2019

(Sage)

def F(n, k, q):

if (n==0 and k==0): return 1

else: return product(fibonacci(q*(n-j+1))/fibonacci(q*j) for j in (1..k))

[[F(n, k, 2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 13 2019(GAP)F:= function(n, k, q)

if n=0 and k=0 then return 1;

else return Product([1..k], j-> Fibonacci(q*(n-j+1))/Fibonacci(q*j));

fi;

end;

Flat(List([0..10], n-> List([0..n], k-> F(n, k, 2) ))); # G. C. Greubel, Nov 13 2019

AUTHOR
STATUS

approved

editing

#11 by R. J. Mathar at Sat Sep 02 16:50:52 EDT 2017
STATUS

editing

approved

#10 by R. J. Mathar at Sat Sep 02 16:50:40 EDT 2017
LINKS

C. J. Pita Ruiz Velasco, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pita2/pita8.html">Sums of Products of s-Fibonacci Polynomial Sequences</a>, J. Int. Seq. 14 (2011) # 11.7.6

EXAMPLE

1 ;

1 1 ;

1 3 1 ;

1 8 8 1 ;

1 21 56 21 1 ;

1 55 385 385 55 1 ;

1 144 2640 6930 2640 144 1 ;

1 377 18096 124410 124410 18096 377 1 ;

1 987 124033 2232594 5847270 2232594 124033 987 1 ;

MAPLE

A034801 := proc(n, k)

mul(combinat[fibonacci](2*n-2*j), j=0..k-1) /

mul(combinat[fibonacci](2*j), j=1..k) ;

end proc: # R. J. Mathar, Sep 02 2017

STATUS

approved

editing

#9 by R. J. Mathar at Wed Aug 16 13:26:31 EDT 2017
STATUS

editing

approved

#8 by R. J. Mathar at Wed Aug 16 13:26:25 EDT 2017
LINKS

C. Pita, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pita/pita12.html">On s-Fibonomials</a>, J. Int. Seq. 14 (2011) # 11.3.7

STATUS

approved

editing