(MAGMAMagma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^4/(2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
(MAGMAMagma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^4/(2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
proposed
approved
editing
proposed
editing
proposed
1,2,2
G. C. Greubel, <a href="/A026672/b026672.txt">Table of n, a(n) for n = 2..1000</a>
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^4/(2*(8*x^2 -(1-Sqrt[1-4*x] )^3)), {x, 0, 30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
(PARI) my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
(MAGMA) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^4/(2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
(Sage) a=((1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019
Cf. A236830.
approved
editing
editing
approved
Conjecture: -(n+1)*(n-6)*a(n) +2*(4*n^2-23*n+3)*a(n-1) +3*(-5*n^2+33*n-42)*a(n-2) -2*(2*n-3)*(n-5)*a(n-3)=0. - R. J. Mathar, Aug 08 2015
approved
editing
proposed
approved
editing
proposed