editing
approved
editing
approved
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (18,-80,96).
CoefficientList[Series[1/((1-2x)(1-4x)(1-12x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{18, -80, 96}, {1, 18, 244}, 20] (* Harvey P. Dale, Oct 10 2019 *)
approved
editing
proposed
approved
editing
proposed
From Vincenzo Librandi, Mar 16 2011: (Start)
a(n) = 18*a(n-1) - 80*a(n-2) + 96*a(n-3), n >= 3. - Vincenzo Librandi, Mar 16 2011
a(n) = 16*a(n-1) - 48*a(n-2) + 2^n, n >= 2. - Vincenzo Librandi, Mar 16 2011(End)
a(n) = 9*12^n/5 + 2^n/5 - 4^n. - _R. J. Mathar, _, Mar 17 2011
approved
editing
_N. J. A. Sloane (njas(AT)research.att.com)_.
proposed
approved
Contribution from a(n) = 18*a(n-1) - 80*a(n-2) + 96*a(n-3), n>=3. - Vincenzo Librandi, Mar 16 2011: (Start)
a(n) = 1816*a(n-1) - 8048*a(n-2) + 96*a(2^n-3), , n>=32. - Vincenzo Librandi, Mar 16 2011
a(n) = 16*a(n-1) - 48*a(n-2) + 2^n, a(0)=1, a(1)=18.
(End)
a(n) = 9*12^n/5 +2^n/5 -4^n. - R. J. Mathar, Mar 17 2011
reviewed
proposed
proposed
reviewed
Contribution from Vincenzo Librandi, Mar 16 2011: (Start)
a(n) = 18*a(n-1) - 80*a(n-2) + 96*a(n-3), n>=3.
a(n) = 16*a(n-1) - 48*a(n-2) + 2^n, a(0)=1, a(1)=18.
(End)
approved
proposed