[go: up one dir, main page]

login
Revision History for A016294 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of 1/((1-2x)(1-4x)(1-12x)).
(history; published version)
#12 by Harvey P. Dale at Thu Oct 10 17:07:56 EDT 2019
STATUS

editing

approved

#11 by Harvey P. Dale at Thu Oct 10 17:07:53 EDT 2019
LINKS

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (18,-80,96).

MATHEMATICA

CoefficientList[Series[1/((1-2x)(1-4x)(1-12x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{18, -80, 96}, {1, 18, 244}, 20] (* Harvey P. Dale, Oct 10 2019 *)

STATUS

approved

editing

#10 by Joerg Arndt at Sat Sep 01 01:57:09 EDT 2018
STATUS

proposed

approved

#9 by Jon E. Schoenfield at Sat Sep 01 00:23:32 EDT 2018
STATUS

editing

proposed

#8 by Jon E. Schoenfield at Sat Sep 01 00:23:29 EDT 2018
FORMULA

From Vincenzo Librandi, Mar 16 2011: (Start)

a(n) = 18*a(n-1) - 80*a(n-2) + 96*a(n-3), n >= 3. - Vincenzo Librandi, Mar 16 2011

a(n) = 16*a(n-1) - 48*a(n-2) + 2^n, n >= 2. - Vincenzo Librandi, Mar 16 2011(End)

a(n) = 9*12^n/5 + 2^n/5 - 4^n. - _R. J. Mathar, _, Mar 17 2011

AUTHOR
STATUS

approved

editing

#7 by Russ Cox at Fri Mar 30 16:46:06 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com)_.

Discussion
Fri Mar 30
16:46
OEIS Server: https://oeis.org/edit/global/110
#6 by R. J. Mathar at Thu Mar 17 19:14:30 EDT 2011
STATUS

proposed

approved

#5 by R. J. Mathar at Thu Mar 17 19:14:20 EDT 2011
FORMULA

Contribution from a(n) = 18*a(n-1) - 80*a(n-2) + 96*a(n-3), n>=3. - Vincenzo Librandi, Mar 16 2011: (Start)

a(n) = 1816*a(n-1) - 8048*a(n-2) + 96*a(2^n-3), , n>=32. - Vincenzo Librandi, Mar 16 2011

a(n) = 16*a(n-1) - 48*a(n-2) + 2^n, a(0)=1, a(1)=18.

(End)

a(n) = 9*12^n/5 +2^n/5 -4^n. - R. J. Mathar, Mar 17 2011

STATUS

reviewed

proposed

#4 by Joerg Arndt at Thu Mar 17 06:46:24 EDT 2011
STATUS

proposed

reviewed

#3 by Vincenzo Librandi at Wed Mar 16 03:27:10 EDT 2011
FORMULA

Contribution from Vincenzo Librandi, Mar 16 2011: (Start)

a(n) = 18*a(n-1) - 80*a(n-2) + 96*a(n-3), n>=3.

a(n) = 16*a(n-1) - 48*a(n-2) + 2^n, a(0)=1, a(1)=18.

(End)

STATUS

approved

proposed