editing
approved
editing
approved
a(n) = A000984(n) -2^(n+2) +n+3.
D-finite: -(n+1)*(131*n-245) *a(n) +2*(563*n^2-867*n-245) *a(n-1) +3*(-1099*n^2+2480*n-1105) *a(n-2) +2*(1987*n^2-5829*n+4205) *a(n-3) -4*(209*n-178)*(2*n-5) *a(n-4)=0. - R. J. Mathar, Jun 11 2019
seq( binomial(2*n+2, n+1)-2^(n+2)+n+3, n=0..20);
approved
editing
editing
approved
D-finite: -(n+1)*(131*n-245) *a(n) +2*(563*n^2-867*n-245) *a(n-1) +3*(-1099*n^2+2480*n-1105) *a(n-2) +2*(1987*n^2-5829*n+4205) *a(n-3) -4*(209*n-178)*(2*n-5) *a(n-4)=0. - _R. J. Mathar_, Jun 11 2019
) -4*(209*n-178)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 11 2019
Boothby, T.; Burkert, J.; Eichwald, M.; Ernst, D. C.; Green, R. M.; Macauley, M. <a href="https://doi.org/10.1007/s10801-011-0327-z">On the cyclically fully commutative elements of Coxeter groups</a>, J. Algebr. Comb. 36, No. 1, 123-148 (2012), Table 1 type H.
D-finite: -(n+1)*(131*n-245)*a(n) +2*(563*n^2-867*n-245)*a(n-1) +3*(-1099*n^2+2480*n-1105)*a(n-2) +2*(1987*n^2-5829*n+4205)*a(n-3
) -4*(209*n-178)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 11 2019
nonn,easy
approved
editing
C. Kenneth Fan (ckfan(AT)MATH.HARVARD.EDU)
Commutative Number of commutative elements in Coxeter group H_n.
nonn,new
nonn
nonn,new
nonn
C. Kenneth Fan (ckfan@(AT)MATH.HARVARD.EDU)
Commutative elements in Coxeter group $H sub _n$.
C. Kenneth Fan, Structure of a Hecke algebra quotient, preprint, 1996. J. Amer. Math. Soc. 10 (1997), no. 1, 139-167.
C. K. Fan, A Hecke algebra quotient and some combinatorial applications. J. Algebraic Combin. 5 (1996), no. 3, 175-189.
nonn,new
nonn
Commutative elements in Coxeter group $H sub n$.
1, 2, 9, 44, 195, 804, 3185, 12368, 47607, 182720, 701349, 2695978, 10384231, 40083848, 155052001, 600949336, 2333344095, 9074611032, 35344215245, 137844431690, 538253680159, 2104090575136, 8233413950409
0,2
C. Kenneth Fan, Structure of a Hecke algebra quotient, preprint, 1996.
binomial(2*n+2, n+1)-2^(n+2)+n+3;
nonn
C. Kenneth Fan (ckfan@MATH.HARVARD.EDU)
approved