[go: up one dir, main page]

login
Revision History for A013981 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of commutative elements in Coxeter group H_n.
(history; published version)
#10 by R. J. Mathar at Tue Jan 21 04:37:20 EST 2020
STATUS

editing

approved

#9 by R. J. Mathar at Tue Jan 21 04:37:04 EST 2020
FORMULA

a(n) = A000984(n) -2^(n+2) +n+3.

D-finite: -(n+1)*(131*n-245) *a(n) +2*(563*n^2-867*n-245) *a(n-1) +3*(-1099*n^2+2480*n-1105) *a(n-2) +2*(1987*n^2-5829*n+4205) *a(n-3) -4*(209*n-178)*(2*n-5) *a(n-4)=0. - R. J. Mathar, Jun 11 2019

MAPLE

seq( binomial(2*n+2, n+1)-2^(n+2)+n+3, n=0..20);

STATUS

approved

editing

#8 by R. J. Mathar at Tue Jun 11 08:13:10 EDT 2019
STATUS

editing

approved

#7 by R. J. Mathar at Tue Jun 11 08:13:01 EDT 2019
FORMULA

D-finite: -(n+1)*(131*n-245) *a(n) +2*(563*n^2-867*n-245) *a(n-1) +3*(-1099*n^2+2480*n-1105) *a(n-2) +2*(1987*n^2-5829*n+4205) *a(n-3) -4*(209*n-178)*(2*n-5) *a(n-4)=0. - _R. J. Mathar_, Jun 11 2019

) -4*(209*n-178)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 11 2019

#6 by R. J. Mathar at Tue Jun 11 08:12:18 EDT 2019
LINKS

Boothby, T.; Burkert, J.; Eichwald, M.; Ernst, D. C.; Green, R. M.; Macauley, M. <a href="https://doi.org/10.1007/s10801-011-0327-z">On the cyclically fully commutative elements of Coxeter groups</a>, J. Algebr. Comb. 36, No. 1, 123-148 (2012), Table 1 type H.

FORMULA

D-finite: -(n+1)*(131*n-245)*a(n) +2*(563*n^2-867*n-245)*a(n-1) +3*(-1099*n^2+2480*n-1105)*a(n-2) +2*(1987*n^2-5829*n+4205)*a(n-3

) -4*(209*n-178)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 11 2019

KEYWORD

nonn,easy

STATUS

approved

editing

#5 by Russ Cox at Sat Mar 31 23:00:44 EDT 2012
AUTHOR

C. Kenneth Fan (ckfan(AT)MATH.HARVARD.EDU)

Ken Fan

Discussion
Sat Mar 31
23:00
OEIS Server: https://oeis.org/edit/global/1631
#4 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
NAME

Commutative Number of commutative elements in Coxeter group H_n.

KEYWORD

nonn,new

nonn

#3 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
KEYWORD

nonn,new

nonn

AUTHOR

C. Kenneth Fan (ckfan@(AT)MATH.HARVARD.EDU)

#2 by N. J. A. Sloane at Sat Dec 11 03:00:00 EST 1999
NAME

Commutative elements in Coxeter group $H sub _n$.

REFERENCES

C. Kenneth Fan, Structure of a Hecke algebra quotient, preprint, 1996. J. Amer. Math. Soc. 10 (1997), no. 1, 139-167.

C. K. Fan, A Hecke algebra quotient and some combinatorial applications. J. Algebraic Combin. 5 (1996), no. 3, 175-189.

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Wed Dec 11 03:00:00 EST 1996
NAME

Commutative elements in Coxeter group $H sub n$.

DATA

1, 2, 9, 44, 195, 804, 3185, 12368, 47607, 182720, 701349, 2695978, 10384231, 40083848, 155052001, 600949336, 2333344095, 9074611032, 35344215245, 137844431690, 538253680159, 2104090575136, 8233413950409

OFFSET

0,2

REFERENCES

C. Kenneth Fan, Structure of a Hecke algebra quotient, preprint, 1996.

MAPLE

binomial(2*n+2, n+1)-2^(n+2)+n+3;

KEYWORD

nonn

AUTHOR

C. Kenneth Fan (ckfan@MATH.HARVARD.EDU)

STATUS

approved