editing
approved
editing
approved
a(n) = (1/90)*(-337*(n mod 6) + 38*((n+1) mod 6) + 143*((n+2) mod 6) - 67*((n+3) mod 6) + 38*((n+4) mod 6) + 413*((n+5) mod 6)) - 13*(C(2*n,n) mod 2), with n >= 0. - Paolo P. Lava, Jul 28 2009
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = (1/90)*{(-337*(n mod 6) + 38*[((n+1) mod 6]) + 143*[((n+2) mod 6]) - 67*[((n+3) mod 6]) + 38*[((n+4) mod 6]) + 413*[((n+5) mod 6]})) - 13*[(C(2*n,n) mod 2], ), with n >= 0 [From _. - _Paolo P. Lava_, Jul 28 2009]
ContinuedFraction[Sqrt[183], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 26 2011 *)
approved
editing
editing
approved
<a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 1).
approved
editing
ContinuedFraction[Sqrt[183], 300] (*From _Vladimir Joseph Stephan Orlovsky, _, Mar 26 2011*)
a(n)=(1/90)*{-337*(n mod 6)+38*[(n+1) mod 6]+143*[(n+2) mod 6]-67*[(n+3) mod 6]+38*[(n+4) mod 6]+413*[(n+5) mod 6]}-13*[C(2*n,n) mod 2], with n>=0 [From _Paolo P. Lava (paoloplava(AT)gmail.com), _, Jul 28 2009]